求一元二次方程推导式
展开全部
判别式是Δ=b^2-4ac,常用于判断方程解的情况:
若b^2-4ac>0 则方程有两个不相等的实数根
若b^2-4ac=0 则方程有两个相等的实数根
若b^2-4ac<0 则方程没有实数解
韦达定理是:一元二次方程ax^2+bx+c=0 (a≠0 且△=b^2-4ac≥0)中
设两个根为X1和X2
则X1+X2= -b/a
X1*X2=c/a
证明:当Δ=b^2-4ac≥0时,方程
ax^2+bx+c=0(a≠0)
有两个实根,设为x1,x2.
由求根公式x=(-b±√Δ)/2a,不妨取
x1=(-b-√Δ)/2a,x2=(-b+√Δ)/2a,
则:x1+x2
=(-b-√Δ)/2a+(-b+√Δ)/2a
=-2b/2a
=-b/a,
x1*x2=[(-b-√Δ)/2a][(-b+√Δ)/2a]
=[(-b)^2-Δ]/4a^2
=4ac/4a^2
=c/a.
综上,x1+x2=-b/a,x1*x2=c/a.
若b^2-4ac>0 则方程有两个不相等的实数根
若b^2-4ac=0 则方程有两个相等的实数根
若b^2-4ac<0 则方程没有实数解
韦达定理是:一元二次方程ax^2+bx+c=0 (a≠0 且△=b^2-4ac≥0)中
设两个根为X1和X2
则X1+X2= -b/a
X1*X2=c/a
证明:当Δ=b^2-4ac≥0时,方程
ax^2+bx+c=0(a≠0)
有两个实根,设为x1,x2.
由求根公式x=(-b±√Δ)/2a,不妨取
x1=(-b-√Δ)/2a,x2=(-b+√Δ)/2a,
则:x1+x2
=(-b-√Δ)/2a+(-b+√Δ)/2a
=-2b/2a
=-b/a,
x1*x2=[(-b-√Δ)/2a][(-b+√Δ)/2a]
=[(-b)^2-Δ]/4a^2
=4ac/4a^2
=c/a.
综上,x1+x2=-b/a,x1*x2=c/a.
追问
= =复制党~
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
ax²+bx+c=0
X=(-b±根号内b²-4ac)/2a
X=(-b±根号内b²-4ac)/2a
更多追问追答
追问
就只有这一个吗
追答
(x-a)(x-b)=0
x=a或B
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-07-01
展开全部
为什么不到百科里看看,挺详细的
http://baike.baidu.com/view/397767.html?wtp=tt
http://baike.baidu.com/view/397767.html?wtp=tt
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询