已知等比数列(an)满足2a1+a3=3a2且a3+2是a2,a4的等差中项 求数列(an)的通项公式?
展开全部
an=2^n
步骤:
等比数列{an}, =>an=a1*q^(n-1),(a1、q不为0)
=> a2=a1q,a3=a1q^2,a4=a1q^3,
2a1+a3=3a2
=>2a1+a1q^2=3a1q, => q^2-3q+2=0, =>q=1或2,
a3+2是a2,a4的等差中项, =>2(a3+2)=a2+a4, =>2a1q^2+4=a1q+a1q^3,
1) q=1时,=> 2a1+4=a1+a1,=>不成立。
2) q=2时, => 2a1*4+4=a1*2+a1*8, => a1=2,
=> an=a1*q^(n-1)=2*2^(n-1)=2^n.
步骤:
等比数列{an}, =>an=a1*q^(n-1),(a1、q不为0)
=> a2=a1q,a3=a1q^2,a4=a1q^3,
2a1+a3=3a2
=>2a1+a1q^2=3a1q, => q^2-3q+2=0, =>q=1或2,
a3+2是a2,a4的等差中项, =>2(a3+2)=a2+a4, =>2a1q^2+4=a1q+a1q^3,
1) q=1时,=> 2a1+4=a1+a1,=>不成立。
2) q=2时, => 2a1*4+4=a1*2+a1*8, => a1=2,
=> an=a1*q^(n-1)=2*2^(n-1)=2^n.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询