11个回答
展开全部
黑洞是一种引力极强的天体,就连光也不能逃脱。当恒星的史瓦西半径小到一定程度时,就连垂直表面发射的光都无法逃逸了。这时恒星就变成了黑洞。说它“黑”,是指它就像宇宙中的无底洞,任何物质一旦掉进去,“似乎”就再不能逃出。由于黑洞中的光无法逃逸,所以我们无法直接观测到黑洞。然而,可以通过测量它对周围天体的作用和影响来间接观测或推测到它的存在。黑洞引申义为无法摆脱的境遇。
黑洞的产生过程类似于中子星的产生过程;恒星的核心在自身重量的作用下迅速地收缩,发生强力爆炸。当核心中所有的物质都变成中子时收缩过程立即停止,被压缩成一个密实的星球。但在黑洞情况下,由于恒星核心的质量大到使收缩过程无休止地进行下去,中子本身在挤压引力自身的吸引下被碾为粉末,剩下来的是一个密度高到难以想象的物质。由于高密度而产生的力量,使得 黑洞。
也可以简单理解:通常恒星的最初只含氢元素,恒星内部的氢原子时刻相互碰撞,发生聚变。由于恒星质量很大,聚变产生的能量与恒星万有引力抗衡,以维持恒星结构的稳定。由于聚变,氢原子内部结构最终发生改变,破裂并组成新的元素——氦元素。接着,氦原子也参与聚变,改变结构,生成锂元素。如此类推,按照元素周期表的顺序,会依次有铍元素、硼元素、碳元素、氮元素等生成。直至铁元素生成,该恒星便会坍塌。这是由于铁元素相当稳定不能参与聚变,而铁元素存在于恒星内部,导致恒星内部不具有足够的能量与质量巨大的恒星的万有引力抗衡,从而引发恒星坍塌,最终形成黑洞。说它“黑”,是指它就像宇宙中的无底洞,任何物质一旦掉进去,“似乎”就再不能逃出。黑洞的产生过程类似于中子星的产生过程;恒星的核心在自身重量的作用下迅速地收缩,发生强力爆炸。当核心中所有的物质都变成中子时收缩过程立即停止,被压缩成一个密实的星球。
恒星的引力场改变了光线的路径,使之和原先没有恒星情况下的路径不一样。光锥是表示光线从其顶端发出后在空间——时间里传播的轨道。光锥在恒星表面附近稍微向内偏
折,在日食时观察远处恒星发出的光线,可以看到这种偏折现象。当该恒星收缩时,其表面的引力场变得很强,光线向内偏折得更多,从而使得光线从恒星逃逸变得更为困难。对于在远处的观察者而言,光线变得更黯淡更红。最后,当这恒星收缩到某一临界半径时,表面的引力场变得如此之强,使得光锥向内偏折得这么多,以至于光线再也逃逸不出去 。根据相对论,没有东西会走得比光还快。这样,如果光都逃逸不出来,其他东西更不可能逃逸,都会被引力拉回去。也就是说,存在一个事件的集合或空间——时间区域,光或任何东西都不可能从该区域逃逸而到达远处的观察者,这样的区域称作黑洞。将其边界称作事件视界,它和刚好不能从黑洞逃逸的光线的轨迹相重合。
黑洞图片(20张) 与别的天体相比,黑洞十分特殊。人们无法直接观察到它,物理学家也只能对它内部结构提出各种猜想。而使得黑洞把自己隐藏起来的的原因即是弯曲的空间。根据广义相对论,空间会在引力场作用下弯曲。这时候,光虽然仍然沿任意两点间的最短距离传播,但相对而言它已弯曲。在经过大密度的天体时,空间会弯曲。光也就偏离了原来的方向。 在地球上,由于引力场作用很小,空间的弯曲是微乎其微的。而在黑洞周围,空间的这种变形非常大。这样,即使是被黑洞挡着的恒星发出的光,虽然有一部分会落入黑洞中消失,可另一部分光线会通过弯曲的空间中绕过黑洞而到达地球。观察到黑洞背面的星空,就像黑洞不存在一样,这就是黑洞的隐身术。 更有趣的是,有些恒星不仅是朝着地球发出的光能直接到达地球,它朝其它方向发射的光也可能被附近的黑洞的强引力折射而能到达地球。这样我们不仅能看见这颗恒星的“脸”,还同时看到它的“侧面”、甚至“后背”。 图注一:这张红外波段图像拍摄的是我们所居住银河系的中心部位,所有银河系的恒星都围绕银心部位可能存在的一个超大质量黑洞公转。 版权:ESO/S. Gillessen et al
北京时间1月1日消息,据美国太空网报道,一项新的研究显示,宇宙中最大质量的黑洞开始快速成长的时期可能比科学家原先的估计更早,并且现在仍在加速成长。 一个来自以色列特拉维夫大学的天文学家小组发现,宇宙中最大质量黑洞的首次快速成长期出现在宇宙年龄约为12亿年时,而非之前认为的20~40亿年。天文学家们估计宇宙目前的年龄约为137亿年。 同时,这项研究还发现宇宙中最古老、质量最大的黑洞同样具有非常快速的成长。有关这一发现的详细情况将发表在最新一期的《天体物理学报》。 1、巨型黑洞 宇宙中大部分星系,包括我们居住的银河系的中心都隐藏着一个超大质量黑洞。这些黑洞质量大小不一,从100万个太阳质量到100亿个太阳质量。 天文学家们通过探测黑洞周围吸积盘发出的强烈辐射推断这些黑洞的存在。物质在受到强烈黑洞引力下落时,会在其周围形成吸积盘盘旋下降,在这一过程中势能迅速释放,将物质加热到极高的温度,从而发出强烈辐射。黑洞通过吸积方式吞噬周围物质,这可能就是它的成长方式。 这项最新的研究采用了全世界最先进的地基观测设施,包括位于美国夏威夷莫纳克亚山顶,海拔4000多米处的北双子望远镜,以及位于智利帕拉那山的欧洲南方天文台甚大望远镜阵列。 2、大质量黑洞的成长 观测结果显示,出现在宇宙年龄仅为12亿年时的活跃黑洞,其质量要比稍后出现的大部分大质量黑洞质量小10倍。但是它们的成长速度非常快,因而现在它们的质量要比后者大得多。通过对这种成长速度的测算,研究人员可以估算出这些黑洞天体之前和之后的发展路径。 该研究小组发现,那些最古老的黑洞,即那些在宇宙年龄仅为数亿年时便开始进入全面成长期的黑洞,它们的质量仅为太阳的100到1000倍。研究人员认为这些黑洞的形成和演化可能和宇宙中最早的恒星有关。天文学家们还注意到,在最初的12亿年后,这些被观测的黑洞天体的成长期仅仅持续了1亿到两亿年。这项研究是一个已持续7年的研究计划的成果。
黑洞通常是因为它们聚拢周围的气体产生辐射而被发现的,这一过程被称为吸积。高温气体辐射热能的效率会严重影响吸积流的几何与动力学特性。目前观测到了辐射效率较高的薄 黑洞拉伸,撕裂并吞噬恒星盘以及辐射效率较低的厚盘。当吸积气体接近中央黑洞时,它们产生的辐射对黑洞的自转以及视界的存在极为敏感。对吸积黑洞光度和光谱的分析为旋转黑洞和视界的存在提供了强有力的证据。数值模拟也显示吸积黑洞经常出现相对论喷流也部分是由黑洞的自转所驱动的。 天体物理学家用“吸积”这个词来描述物质向中央引力体或者是中央延展物质系统的流动。吸积是天体物理中最普遍的过程之一,而且也正是因为吸积才形成了我们周围许多常见的结构。在宇宙早期,当气体朝由暗物质造成的引力势阱中心流动时形成了星系。即使到了今天,恒星依然是由气体云在其自身引力作用下坍缩碎裂,进而通过吸积周围气体而形成的。行星(包括地球)也是在新形成的恒星周围通过气体和岩石的聚集而形成的。但是当中央天体是一个黑洞时,吸积就会展现出它最为壮观的一面。然而黑洞并不是什么都吸收的,它也往外边散发质子。
蒸发
由于黑洞的密度极大,根据公式我们可以知道密度=质量/体积,为了 黑洞喷射物不断变亮
让黑洞密度无限大,那就说明黑洞的体积要无限小,然后质量要无限大,这样才能成为黑洞。黑洞是由一些恒星“灭亡”后所形成的死星,他的质量极大,体积极小。但黑洞也有灭亡的那天,按照霍金的理论,把量子理论中的海森堡测不准原理和黑洞结合起来,假设某一粒子在黑洞中高速运动,测不准原理讲一个微观粒子的动量和位置不可能同时具有确定的数值,其中一个量越确定,另一个量的不确定程度就越大。黑洞相对于微观粒子体积非常大,故其位置不会被很好的定义,因此,其动量定义较准。
毁灭
黑洞会发出耀眼的光芒,体积会缩小,甚至会爆炸。当英国物理学家史迪芬·霍金于1974年做此预言时,整个科学界为之震动。 霍金的理论是受灵感支配的思维的飞跃,他结合了广义相对论和量子理论。他发现黑洞周围的引力场释放出能量,同时消耗黑洞的能量和质量。 假设一对粒子会在任何时刻、任何地点被创生,被创生的粒子就是正粒子与反粒子,而如果这一创生过程发生在黑洞附近的话就会有两种情况发生:两粒子湮灭、一个粒子被吸入黑洞。“一个粒子被吸入黑洞”这一情况:在黑洞附近创生的一对粒子其中一个反粒子会被吸入黑洞,而正粒子会逃逸,由于能量不能凭空创生,我们设反粒子携带负能量,正粒子携带正能量,而反粒子的所有运动过程可以视为是一个正粒子的为之相反的运动过程,如一个反粒子被吸入黑洞可视为一个正粒子从黑洞逃逸。这一情况就是一个携带着从黑洞里来的正能量的粒子逃逸了,即黑洞的总能量少了,而爱因斯坦的公式E=mc^2表明,能量的损失会导致质量的损失。 当黑洞的质量越来越小时,它的温度会越来越高。这样,当黑洞损失质量时,它的温度和发射率增加,因而它的质量损失得更快。这种“霍金辐射”对大多数黑洞来说可以忽略不计,因为大黑洞辐射的比较慢,而小黑洞则以极高的速度辐射能量,直到黑洞的爆炸。
任何靠近它的物体都会被它吸进去。
黑洞的产生过程类似于中子星的产生过程;恒星的核心在自身重量的作用下迅速地收缩,发生强力爆炸。当核心中所有的物质都变成中子时收缩过程立即停止,被压缩成一个密实的星球。但在黑洞情况下,由于恒星核心的质量大到使收缩过程无休止地进行下去,中子本身在挤压引力自身的吸引下被碾为粉末,剩下来的是一个密度高到难以想象的物质。由于高密度而产生的力量,使得 黑洞。
也可以简单理解:通常恒星的最初只含氢元素,恒星内部的氢原子时刻相互碰撞,发生聚变。由于恒星质量很大,聚变产生的能量与恒星万有引力抗衡,以维持恒星结构的稳定。由于聚变,氢原子内部结构最终发生改变,破裂并组成新的元素——氦元素。接着,氦原子也参与聚变,改变结构,生成锂元素。如此类推,按照元素周期表的顺序,会依次有铍元素、硼元素、碳元素、氮元素等生成。直至铁元素生成,该恒星便会坍塌。这是由于铁元素相当稳定不能参与聚变,而铁元素存在于恒星内部,导致恒星内部不具有足够的能量与质量巨大的恒星的万有引力抗衡,从而引发恒星坍塌,最终形成黑洞。说它“黑”,是指它就像宇宙中的无底洞,任何物质一旦掉进去,“似乎”就再不能逃出。黑洞的产生过程类似于中子星的产生过程;恒星的核心在自身重量的作用下迅速地收缩,发生强力爆炸。当核心中所有的物质都变成中子时收缩过程立即停止,被压缩成一个密实的星球。
恒星的引力场改变了光线的路径,使之和原先没有恒星情况下的路径不一样。光锥是表示光线从其顶端发出后在空间——时间里传播的轨道。光锥在恒星表面附近稍微向内偏
折,在日食时观察远处恒星发出的光线,可以看到这种偏折现象。当该恒星收缩时,其表面的引力场变得很强,光线向内偏折得更多,从而使得光线从恒星逃逸变得更为困难。对于在远处的观察者而言,光线变得更黯淡更红。最后,当这恒星收缩到某一临界半径时,表面的引力场变得如此之强,使得光锥向内偏折得这么多,以至于光线再也逃逸不出去 。根据相对论,没有东西会走得比光还快。这样,如果光都逃逸不出来,其他东西更不可能逃逸,都会被引力拉回去。也就是说,存在一个事件的集合或空间——时间区域,光或任何东西都不可能从该区域逃逸而到达远处的观察者,这样的区域称作黑洞。将其边界称作事件视界,它和刚好不能从黑洞逃逸的光线的轨迹相重合。
黑洞图片(20张) 与别的天体相比,黑洞十分特殊。人们无法直接观察到它,物理学家也只能对它内部结构提出各种猜想。而使得黑洞把自己隐藏起来的的原因即是弯曲的空间。根据广义相对论,空间会在引力场作用下弯曲。这时候,光虽然仍然沿任意两点间的最短距离传播,但相对而言它已弯曲。在经过大密度的天体时,空间会弯曲。光也就偏离了原来的方向。 在地球上,由于引力场作用很小,空间的弯曲是微乎其微的。而在黑洞周围,空间的这种变形非常大。这样,即使是被黑洞挡着的恒星发出的光,虽然有一部分会落入黑洞中消失,可另一部分光线会通过弯曲的空间中绕过黑洞而到达地球。观察到黑洞背面的星空,就像黑洞不存在一样,这就是黑洞的隐身术。 更有趣的是,有些恒星不仅是朝着地球发出的光能直接到达地球,它朝其它方向发射的光也可能被附近的黑洞的强引力折射而能到达地球。这样我们不仅能看见这颗恒星的“脸”,还同时看到它的“侧面”、甚至“后背”。 图注一:这张红外波段图像拍摄的是我们所居住银河系的中心部位,所有银河系的恒星都围绕银心部位可能存在的一个超大质量黑洞公转。 版权:ESO/S. Gillessen et al
北京时间1月1日消息,据美国太空网报道,一项新的研究显示,宇宙中最大质量的黑洞开始快速成长的时期可能比科学家原先的估计更早,并且现在仍在加速成长。 一个来自以色列特拉维夫大学的天文学家小组发现,宇宙中最大质量黑洞的首次快速成长期出现在宇宙年龄约为12亿年时,而非之前认为的20~40亿年。天文学家们估计宇宙目前的年龄约为137亿年。 同时,这项研究还发现宇宙中最古老、质量最大的黑洞同样具有非常快速的成长。有关这一发现的详细情况将发表在最新一期的《天体物理学报》。 1、巨型黑洞 宇宙中大部分星系,包括我们居住的银河系的中心都隐藏着一个超大质量黑洞。这些黑洞质量大小不一,从100万个太阳质量到100亿个太阳质量。 天文学家们通过探测黑洞周围吸积盘发出的强烈辐射推断这些黑洞的存在。物质在受到强烈黑洞引力下落时,会在其周围形成吸积盘盘旋下降,在这一过程中势能迅速释放,将物质加热到极高的温度,从而发出强烈辐射。黑洞通过吸积方式吞噬周围物质,这可能就是它的成长方式。 这项最新的研究采用了全世界最先进的地基观测设施,包括位于美国夏威夷莫纳克亚山顶,海拔4000多米处的北双子望远镜,以及位于智利帕拉那山的欧洲南方天文台甚大望远镜阵列。 2、大质量黑洞的成长 观测结果显示,出现在宇宙年龄仅为12亿年时的活跃黑洞,其质量要比稍后出现的大部分大质量黑洞质量小10倍。但是它们的成长速度非常快,因而现在它们的质量要比后者大得多。通过对这种成长速度的测算,研究人员可以估算出这些黑洞天体之前和之后的发展路径。 该研究小组发现,那些最古老的黑洞,即那些在宇宙年龄仅为数亿年时便开始进入全面成长期的黑洞,它们的质量仅为太阳的100到1000倍。研究人员认为这些黑洞的形成和演化可能和宇宙中最早的恒星有关。天文学家们还注意到,在最初的12亿年后,这些被观测的黑洞天体的成长期仅仅持续了1亿到两亿年。这项研究是一个已持续7年的研究计划的成果。
黑洞通常是因为它们聚拢周围的气体产生辐射而被发现的,这一过程被称为吸积。高温气体辐射热能的效率会严重影响吸积流的几何与动力学特性。目前观测到了辐射效率较高的薄 黑洞拉伸,撕裂并吞噬恒星盘以及辐射效率较低的厚盘。当吸积气体接近中央黑洞时,它们产生的辐射对黑洞的自转以及视界的存在极为敏感。对吸积黑洞光度和光谱的分析为旋转黑洞和视界的存在提供了强有力的证据。数值模拟也显示吸积黑洞经常出现相对论喷流也部分是由黑洞的自转所驱动的。 天体物理学家用“吸积”这个词来描述物质向中央引力体或者是中央延展物质系统的流动。吸积是天体物理中最普遍的过程之一,而且也正是因为吸积才形成了我们周围许多常见的结构。在宇宙早期,当气体朝由暗物质造成的引力势阱中心流动时形成了星系。即使到了今天,恒星依然是由气体云在其自身引力作用下坍缩碎裂,进而通过吸积周围气体而形成的。行星(包括地球)也是在新形成的恒星周围通过气体和岩石的聚集而形成的。但是当中央天体是一个黑洞时,吸积就会展现出它最为壮观的一面。然而黑洞并不是什么都吸收的,它也往外边散发质子。
蒸发
由于黑洞的密度极大,根据公式我们可以知道密度=质量/体积,为了 黑洞喷射物不断变亮
让黑洞密度无限大,那就说明黑洞的体积要无限小,然后质量要无限大,这样才能成为黑洞。黑洞是由一些恒星“灭亡”后所形成的死星,他的质量极大,体积极小。但黑洞也有灭亡的那天,按照霍金的理论,把量子理论中的海森堡测不准原理和黑洞结合起来,假设某一粒子在黑洞中高速运动,测不准原理讲一个微观粒子的动量和位置不可能同时具有确定的数值,其中一个量越确定,另一个量的不确定程度就越大。黑洞相对于微观粒子体积非常大,故其位置不会被很好的定义,因此,其动量定义较准。
毁灭
黑洞会发出耀眼的光芒,体积会缩小,甚至会爆炸。当英国物理学家史迪芬·霍金于1974年做此预言时,整个科学界为之震动。 霍金的理论是受灵感支配的思维的飞跃,他结合了广义相对论和量子理论。他发现黑洞周围的引力场释放出能量,同时消耗黑洞的能量和质量。 假设一对粒子会在任何时刻、任何地点被创生,被创生的粒子就是正粒子与反粒子,而如果这一创生过程发生在黑洞附近的话就会有两种情况发生:两粒子湮灭、一个粒子被吸入黑洞。“一个粒子被吸入黑洞”这一情况:在黑洞附近创生的一对粒子其中一个反粒子会被吸入黑洞,而正粒子会逃逸,由于能量不能凭空创生,我们设反粒子携带负能量,正粒子携带正能量,而反粒子的所有运动过程可以视为是一个正粒子的为之相反的运动过程,如一个反粒子被吸入黑洞可视为一个正粒子从黑洞逃逸。这一情况就是一个携带着从黑洞里来的正能量的粒子逃逸了,即黑洞的总能量少了,而爱因斯坦的公式E=mc^2表明,能量的损失会导致质量的损失。 当黑洞的质量越来越小时,它的温度会越来越高。这样,当黑洞损失质量时,它的温度和发射率增加,因而它的质量损失得更快。这种“霍金辐射”对大多数黑洞来说可以忽略不计,因为大黑洞辐射的比较慢,而小黑洞则以极高的速度辐射能量,直到黑洞的爆炸。
任何靠近它的物体都会被它吸进去。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
黑洞是由德国数学家卡尔·史瓦西首次计算出来的,在黑洞周围任何东西无论是信号、光还是物质都无法逃逸,时空在这里成为了一个无底洞,这么一个看不到摸不到也探测不到的地方就叫黑洞。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
黑洞 ,黑,表明它不会向外界发射或反射任何光线电磁波。洞,说的是任何东西,只要一进入它的边界,就休想再溜出去......
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询