设f(x)在[0,1]上连续,并设∫(0~1)f(x)dx=A,求∫(0~1)dx∫(x~1)f(x)f(y)dy.

这题的思路是?求过程啊... 这题的思路是?求过程啊 展开
百度网友ce8d01c
2011-07-02 · 知道合伙人教育行家
百度网友ce8d01c
知道合伙人教育行家
采纳数:20072 获赞数:87094
喜欢数学

向TA提问 私信TA
展开全部
设其原函数是F(x)
∫(0~1)f(x)dx=A=F(1)-F(0)
∫(0~1)dx∫(x~1)f(x)f(y)dy
=∫(0~1)f(x)dx∫(x~1)f(y)dy
=∫(0~1)[F(1)-F(x)]f(x)dx
=∫(0~1)[F(1)-F(x)]dF(x)
=[F(1)F(x)-1/2F^2(x)](0~1)
=F^2(1)-1/2F^2(1)-F(1)F(0)+1/2F^2(0)
=1/2F^2(1)-F(1)F(0)+1/2F^2(0)
=1/2[F(1)-F(0)]^2
=1/2A^2
118022273
2011-07-02 · TA获得超过2172个赞
知道小有建树答主
回答量:1666
采纳率:50%
帮助的人:533万
展开全部
∫(0~1)dx∫(x~1)f(x)f(y)dy换元
=∫(0~1)dy∫(y~1)f(y)f(x)dx
换限=∫(0~1)dx∫(0~x)f(x)f(y)dy
和原式相加∫(0~1)dx∫(x~1)f(x)f(y)dy+∫(0~1)dx∫(0~x)f(x)f(y)dy=∫(0~1)dx∫(0~1)f(x)f(y)dy
∫(0~1)f(x)dx=A,所以∫(0~1)dx∫(x~1)f(x)f(y)dy=1/2*∫(0~1)dx∫(0~1)f(x)f(y)dy=A^2/2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式