在等腰直角三角形ABC与等腰直角三角形DBE中,角BDE,角ACB=90度,且BE在AB边上,取AE,CE中点F,G连接GF

判断FG与DC的位置与数量关系,并说明理由... 判断FG与DC的位置与数量关系,并说明理由 展开
jiangfan1223
2011-07-03 · TA获得超过8834个赞
知道小有建树答主
回答量:601
采纳率:0%
帮助的人:657万
展开全部
延长ED交AC的延长线于M,连接FC、FD、FM,
∴四边形BCMD是矩形.
∴CM=BD.
又△ABC和△BDE都是等腰直角三角形,
∴ED=BD=CM.
∵∠E=∠A=45°,
∴△AEM是等腰直角三角形.
又F是AE的中点,
∴MF⊥AE,EF=MF,∠E=∠FMC=45°.
∴△EFD≌△MFC.
∴FD=FC,∠EFD=∠MFC.
又∠EFD+∠DFM=90°,
∴∠MFC+∠DFM=90°.
即△CDF是等腰直角三角形,
又G是CD的中点,
∴FG= 1/2CD,FG⊥CD.
百度网友68eb340
2011-07-02
知道答主
回答量:40
采纳率:0%
帮助的人:17.8万
展开全部
FG=1/2AC=1/2BC
FG//AC,AC垂直BC ,所以FG垂直BC
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式