如图,已知点B.C.D在同一条直线上,△ABC和△CDE都是等边三角形,BE交AC于F,AD交CE于H,求证:AD=BE.
1、判断△CFH的形状并说明理由。2、设AD与BE相交于M,连接CM,求证:CM平分∠BMD....
1、判断△CFH的形状并说明理由。
2、设AD与BE相交于M,连接CM,求证:CM平分∠BMD. 展开
2、设AD与BE相交于M,连接CM,求证:CM平分∠BMD. 展开
3个回答
展开全部
1. △ABC和△CDE都是等边三角形
则AC=BC EC=CD
角ACB=角ECD=60º
角ECB=角ACB+角ACE=角ECD+角ACE=角ACD
因此:△BCE≌△ACD
2. 由1得 角DAC=角EBC
因为角ACB+角ACE+角ECD=180º
所以角ACE=60º
角ACE=角ACB
又 AC=BC
因此:△BFC≌△ACH
CF=CH
3. 由角ACE=60º CF=CH
得: 三角形CFH为等边三角形
则AC=BC EC=CD
角ACB=角ECD=60º
角ECB=角ACB+角ACE=角ECD+角ACE=角ACD
因此:△BCE≌△ACD
2. 由1得 角DAC=角EBC
因为角ACB+角ACE+角ECD=180º
所以角ACE=60º
角ACE=角ACB
又 AC=BC
因此:△BFC≌△ACH
CF=CH
3. 由角ACE=60º CF=CH
得: 三角形CFH为等边三角形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
可以利用四点共圆来解。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |