已知集合A={x| |x-a_=4},集合B={1,2,b}。是否存在实数a,使得对于任意实数b都有a含于B

解:A={a+4,a-4},A中就两个元素。要不管b是多少,都有a含于B,则1,2就必须包括A中的所有元素,所以a+4=2,a-4=1,上面两个式子都成立,是解不出来的,... 解:A={a+4,a-4},A中就两个元素。要不管b是多少,都有a含于B,则1,2就必须包括A中的所有元素,所以a+4=2,a-4=1,上面两个式子都成立,是解不出来的,所以不存在实数a,使得对于任意实数b都有a含于B。

解答过程中 为什么一定要1,2同时被包含在A里面???求解释
展开
五行旗
2011-07-03
知道答主
回答量:14
采纳率:0%
帮助的人:0
展开全部
A={a+4,a-4},A中就两个元素。要不管b是多少,都有a含于B,则1,2就必须包括A中的所有元素,所以a+4=2,a-4=1,上面两个式子都成立,是解不出来的,所以不存在实数a,使得对于任意实数b都有a含于B。
勤骏年VF
2011-07-03 · TA获得超过285个赞
知道小有建树答主
回答量:1005
采纳率:0%
帮助的人:363万
展开全部
A={a+4,a-4},A中就两个元素。要不管b是多少,都有a含于B,则1,2就必须包括A中的所有元素,所以a+4=2,a-4=1,上面两个式子都成立,是解不出来的,所以不存在实数a,使得对于任意实数b都有a含于B嗯嗯。
我是复制的= =
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2011-07-03
展开全部
把A解 出来 A={a+4,a-4},A中就两个元素。要不管b是多少,都有a含于B,则1,2就必须包括A中的所有元素,所以a+4=2,a-4=1,上面两个式子都成立,是解不出来的,所以不存在实数a,所以使得对于任意实数b都有a含于B。。。。。。。
应该是
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式