最小二乘法的原理是什么的?

从远逄凡儿
2020-05-22 · TA获得超过3829个赞
知道大有可为答主
回答量:3113
采纳率:30%
帮助的人:215万
展开全部
最小二乘大约是1795年高斯在他那星体运动轨道预报工作中提出的[1]。后来,最小二乘法就成了估计理论的奠基石。由于最小二乘法结构简单,编制程序也不困难,所以它颇受人们重视,应用相当广泛。
如用标准符号,最小二乘估计可被表示为:
ax=b
(2-43)
上式中的解是最小化
,通过下式中的伪逆可求得:
a'ax=a'b
(2-44)
(a'a)^(-1)a'ax=(a'a)^(-1)a'b
(2-45)
由于
(a'a)^-1a'a=i
(2-46)
所以有
x=(a'a)^(-1)a'b
(2-47)
此即最小二乘的一次完成算法,现代的递推算法,更适用于计算机的在线辨识。
最小二乘是一种最基本的辨识方法,但它具有两方面的缺陷[1]:一是当模型噪声是有色噪声时,最小二乘估计不是无偏、一致估计;二是随着数据的增长,将出现所谓的“数据饱和”现象。针对这两个问题,出现了相应的辨识算法,如遗忘因子法、限定记忆法、偏差补偿法、增广最小二乘、广义最小二乘、辅助变量法、二步法及多级最小二乘法等。
高顿GOLDEN
2020-02-26 · 百度认证:高顿教育官方账号
高顿GOLDEN
高顿网校作为财经证书网络教育品牌,集财经教育核心资源于一身,旗下拥有高顿公开课、在线直播、高顿题库、高顿部落、APP客户端等平台资源,为全球财经界人士提供优质服务及全面解决方案。
向TA提问
展开全部

最小二乘法是一种数学优化技术;它通过最小化误差的平方和寻找数据的最佳函数匹配。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
秒懂百科精选
高粉答主

2021-04-22 · 每个回答都超有意思的
知道答主
回答量:60.8万
采纳率:14%
帮助的人:3.2亿
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
twz562
2013-11-14 · TA获得超过3434个赞
知道小有建树答主
回答量:1798
采纳率:100%
帮助的人:170万
展开全部
在我们研究两个变量(x, y)之间的相互关系时,通常可以得到一系列成对的数据(x1, y1、x2, y2... xm , ym);将这些数据描绘在x -y直角坐标系中,若发现这些点在一条直线附近,可以令这条直线方程如(式1-1)。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
被抢了的爱
2011-07-16 · TA获得超过574个赞
知道答主
回答量:65
采纳率:0%
帮助的人:69万
展开全部
最小二乘法原理
在我们研究两个变量(x, y)之间的相互关系时,通常可以得到一系列成对的数据(x1, y1、x2, y2... xm , ym);将这些数据描绘在x -y直角坐标系中(如图1), 若发现这些点在一条直线附近,可以令这条直线方程如(式1-1)。
Y计= a0 + a1 X (式1-1)
其中:a0、a1 是任意实数
为建立这直线方程就要确定a0和a1,应用《最小二乘法原理》,将实测值Yi与利用(式1-1)计算值(Y计=a0+a1X)的离差(Yi-Y计)的平方和〔∑(Yi - Y计)2〕最小为“优化判据”。
令: φ = ∑(Yi - Y计)2 (式1-2)
把(式1-1)代入(式1-2)中得:
φ = ∑(Yi - a0 - a1 Xi)2 (式1-3)
当∑(Yi-Y计)平方最小时,可用函数 φ 对a0、a1求偏导数,令这两个偏导数等于零。
(式1-4)
(式1-5)
亦即:
m a0 + (∑Xi ) a1 = ∑Yi (式1-6)
(∑Xi ) a0 + (∑Xi2 ) a1 = ∑(Xi, Yi) (式1-7)
得到的两个关于a0、 a1为未知数的两个方程组,解这两个方程组得出:
a0 = (∑Yi) / m - a1(∑Xi) / m (式1-8)
a1 = [∑Xi Yi - (∑Xi ∑Yi)] / [∑Xi2 - (∑Xi)2 )] (式1-9)
这时把a0、a1代入(式1-1)中, 此时的(式1-1)就是我们回归的元线性方程即:数学模型。
在回归过程中,回归的关联式是不可能全部通过每个回归数据点(x1, y1、 x2, y2...xm,ym),为了判断关联式的好坏,可借助相关系数“R”,统计量“F”,剩余标准偏差“S”进行判断;“R”越趋近于 1 越好;“F”的绝对值越大越好;“S”越趋近于 0 越好。
R = [∑XiYi - m (∑Xi / m)(∑Yi / m)]/ SQR{[∑Xi2 - m (∑Xi / m)2][∑Yi2 - m (∑Yi / m)2]} (式1-10) *
在(式1-1)中,m为样本容量,即实验次数;Xi、Yi分别任意一组实验X、Y的数值。微积分应用课题一 最小二乘法
从前面的学习中, 我们知道最小二乘法可以用来处理一组数据, 可以从一组测定的数据中寻求变量之间的依赖关系, 这种函数关系称为经验公式. 本课题将介绍最小二乘法的精确定义及如何寻求 与 之间近似成线性关系时的经验公式. 假定实验测得变量之间的 个数据 , , …, , 则在 平面上, 可以得到 个点 , 这种图形称为“散点图”, 从图中可以粗略看出这些点大致散落在某直线近旁, 我们认为 与 之间近似为一线性函数, 下面介绍求解步骤.
考虑函数 , 其中 和 是待定常数. 如果 在一直线上, 可以认为变量之间的关系为 . 但一般说来, 这些点不可能在同一直线上. 记 , 它反映了用直线 来描述 , 时, 计算值 与实际值 产生的偏差. 当然要求偏差越小越好, 但由于 可正可负, 因此不能认为总偏差 时, 函数 就很好地反映了变量之间的关系, 因为此时每个偏差的绝对值可能很大. 为了改进这一缺陷, 就考虑用 来代替 . 但是由于绝对值不易作解析运算, 因此, 进一步用 来度量总偏差. 因偏差的平方和最小可以保证每个偏差都不会很大. 于是问题归结为确定 中的常数 和 , 使 为最小. 用这种方法确定系数 , 的方法称为最小二乘法.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 2条折叠回答
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式