高数三重积分
设由曲面x^2+y^2+z^2=2az(a>0)所围物体,其上各点的密度与该点到原点的距离成正比(比例系数为k),求物体的重心。...
设由曲面x^2+y^2+z^2=2az(a>0)所围物体,其上各点的密度与该点到原点的距离成正比(比例系数为k),求物体的重心。
展开
展开全部
(0,0,8a/7)
由于对称,重心x,y坐标为0;
z=三重积分z*sqrt(x^2+y^2+z^2)dV/三重积分sqrt(x^2+y^2+z^2)dV;
用球坐标计算,结果为8a/7
由于对称,重心x,y坐标为0;
z=三重积分z*sqrt(x^2+y^2+z^2)dV/三重积分sqrt(x^2+y^2+z^2)dV;
用球坐标计算,结果为8a/7
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询