牛顿莱布尼茨公式是什么啊?谢谢~~

咪浠W眯兮
高粉答主

2018-12-17 · 醉心答题,欢迎关注
知道小有建树答主
回答量:783
采纳率:100%
帮助的人:30.7万
展开全部

牛顿-莱布尼兹公式(Newton-Leibniz formula),通常也被称为微积分基本定理,揭示了定积分与被积函数的原函数或者不定积分之间的联系。

牛顿-莱布尼茨公式的内容是一个连续函数在区间 [ a,b ] 上的定积分等于它的任意一个原函数在区间[ a,b ]上的增量。

牛顿在1666年写的《流数简论》中利用运动学描述了这一公式,1677年,莱布尼茨在一篇手稿中正式提出了这一公式。因为二者最早发现了这一公式,于是命名为牛顿-莱布尼茨公式。

如果函数  在区间  上连续,并且存在原函数 ,则

扩展资料

定理意义:

牛顿-莱布尼茨公式的发现,使人们找到了解决曲线的长度,曲线围成的面积和曲面围成的体积这些问题的一般方法。它简化了定积分的计算,只要知道被积函数的原函数,总可以求出定积分的精确值或一定精度的近似值。

牛顿-莱布尼茨公式是联系微分学与积分学的桥梁,它是微积分中最基本的公式之一。它证明了微分与积分是可逆运算,同时在理论上标志着微积分完整体系的形成,从此微积分成为一门真正的学科。

牛顿-莱布尼茨公式是积分学理论的主干,利用牛顿一莱布尼茨公式可以证明定积分换元公式,积分第一中值定理和积分型余项的泰勒公式。牛顿-莱布尼茨公式还可以推广到二重积分与曲线积分,从一维推广到多维。

参考资料:百度百科-牛顿-莱布尼茨公式

小葵花点穴手
高粉答主

2019-11-13 · 还没有任何签名哦
小葵花点穴手
采纳数:143 获赞数:11260

向TA提问 私信TA
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
ww311ww
推荐于2017-11-24 · TA获得超过1715个赞
知道小有建树答主
回答量:374
采纳率:0%
帮助的人:237万
展开全部
若函数f(x)在[a,b]上连续,且存在原函数F(x),则f(x)在[a,b]上可积,且 b(上限)∫a(下限)f(x)dx=F(b)-F(a) 这即为牛顿—莱布尼茨公式。 牛顿-莱布尼茨公式的意义就在于把不定积分与定积分联系了起来,也让定积分的运算有了一个完善、令人满意的方法。下面就是该公式的证明全过程:
编辑本段对函数f(x)于区间[a,b]上的定积分表达为:
b∫a*f(x)dx 现在我们把积分区间的上限作为一个变量,这样我们就定义了一个新的函数: Φ(x)= x∫a*f(x)dx 但是这里x出现了两种意义,一是表示积分上限,二是表示被积函数的自变量,但定积分中被积函数的自变量取一个定值是没意义的。为了只表示积分上限的变动,我们把被积函数的自变量改成别的字母如t,这样意义就非常清楚了: Φ(x)= x∫a*f(t)dt
编辑本段研究这个函数Φ(x)的性质:
1、定义函数Φ(x)= x(上限)∫a(下限)f(t)dt,则Φ 与格林公式和高斯公式的联系
’(x)=f(x)。 证明:让函数Φ(x)获得增量Δx,则对应的函数增量 ΔΦ=Φ(x+Δx)-Φ(x)=x+Δx(上限)∫a(下限)f(t)dt-x(上限)∫a(下限)f(t)dt 显然,x+Δx(上限)∫a(下限)f(t)dt-x(上限)∫a(下限)f(t)dt=x+Δx(上限)∫x(下限)f(t)dt 而ΔΦ=x+Δx(上限)∫x(下限)f(t)dt=f(ξ)•Δx(ξ在x与x+Δx之间,可由定积分中的中值定理推得, 也可自己画个图,几何意义是非常清楚的。) 当Δx趋向于0也就是ΔΦ趋向于0时,ξ趋向于x,f(ξ)趋向于f(x),故有lim Δx→0 ΔΦ/Δx=f(x) 可见这也是导数的定义,所以最后得出Φ’(x)=f(x)。 2、b(上限)∫a(下限)f(x)dx=F(b)-F(a),F(x)是f(x)的原函数。 证明:我们已证得Φ’(x)=f(x),故Φ(x)+C=F(x) 但Φ(a)=0(积分区间变为[a,a],故面积为0),所以F(a)=C 于是有Φ(x)+F(a)=F(x),当x=b时,Φ(b)=F(b)-F(a), 而Φ(b)=b(上限)∫a(下限)f(t)dt,所以b(上限)∫a(下限)f(t)dt=F(b)-F(a) 把t再写成x,就变成了开头的公式,该公式就是牛顿-莱布尼茨公式。

例子:求由∫(下限为2,上限为y)e^tdt+∫(下限为o,上限为x)costdt=0所确定的隐函数y对x的导数dy/dx
求1,∫(下限为-1,上限为1)(x-1)^3dx 2, 求由∫(下限为0,上限为5)|1-x|dx 3,求由∫(下限为-2,上限为2)x√x^2dx

解答:
e^(y)-e^(2)+sin(x)=0,y=ln(e^(2)-sin(x)),dy/dx=-cos(x)/(e^(2)-sin(x).
1).(x-1)^4/4|(-1,1)=(1-1))^4/4-(-1-1))^4/4=-4;
2).∫(下限为0,上限为5)|1-x|dx=-∫(下限为0,上限为1)x-1dx+
∫(下限为1,上限为5)x-1dx=-(x-1)^2/2|(0,1)+(x-1)^2/2|(1,5)=17/2;
x√x^2是奇函数,所以∫(下限为-2,上限为2)x√x^2dx=0
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2011-07-04
展开全部
这里记录很清楚:http://baike.baidu.com/view/409739.htm
建议仔细看看
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
1933放天晴了
2011-07-04
知道答主
回答量:13
采纳率:0%
帮助的人:0
展开全部
nbkhlk
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式