求C++语言版用回溯法解决八皇后问题的代码
2个回答
展开全部
#include <fstream>
#include <bitset>
#include <vector>
using namespace std;
ofstream cout("out.txt");
void BitSetTest()
{
const int n = 4;
for (int i = 0; i < 16; i++)
cout << bitset<4>(i) << endl;
}
class Enum
{
protected:
vector<int> A;
int M, N;
void Print()
{
for (int i = 0; i < N; i++)
cout << A[i];
cout << endl;
}
virtual bool Valid(int k) {return true;}
public:
Enum(int m, int n): M(m), N(n), A(n) {}
void Generate(int k)
{
if (k == N)
Print();
else
for (A[k] = 0; A[k] < M; A[k]++)
if (Valid(k))
Generate(k + 1);
}
void Generate()
{
int k = 0;
A[k] = -1;
while (k >= 0)
{
A[k]++;
if (A[k] == M)
k--;
else if (Valid(k))
{
if (k == N - 1)
Print();
else
A[++k] = -1;
}
}
}
};
class Perm: public Enum
{
virtual bool Valid(int k)
{
bool v = true;
for (int i = 0; v && i < k; i++)
v = A[k] != A[i];
return v;
}
public:
Perm(int n): Enum(n, n) {}
};
class nQueens: public Enum
{
virtual bool Valid(int k)
{
bool v = true;
for (int i = 0; v && i < k; i++)
v = A[k] != A[i] && k - i != abs(A[k] - A[i]);
return v;
}
public:
nQueens(int n): Enum(n, n) {}
};
int main()
{
nQueens(8).Generate();
return 0;
}
#include <bitset>
#include <vector>
using namespace std;
ofstream cout("out.txt");
void BitSetTest()
{
const int n = 4;
for (int i = 0; i < 16; i++)
cout << bitset<4>(i) << endl;
}
class Enum
{
protected:
vector<int> A;
int M, N;
void Print()
{
for (int i = 0; i < N; i++)
cout << A[i];
cout << endl;
}
virtual bool Valid(int k) {return true;}
public:
Enum(int m, int n): M(m), N(n), A(n) {}
void Generate(int k)
{
if (k == N)
Print();
else
for (A[k] = 0; A[k] < M; A[k]++)
if (Valid(k))
Generate(k + 1);
}
void Generate()
{
int k = 0;
A[k] = -1;
while (k >= 0)
{
A[k]++;
if (A[k] == M)
k--;
else if (Valid(k))
{
if (k == N - 1)
Print();
else
A[++k] = -1;
}
}
}
};
class Perm: public Enum
{
virtual bool Valid(int k)
{
bool v = true;
for (int i = 0; v && i < k; i++)
v = A[k] != A[i];
return v;
}
public:
Perm(int n): Enum(n, n) {}
};
class nQueens: public Enum
{
virtual bool Valid(int k)
{
bool v = true;
for (int i = 0; v && i < k; i++)
v = A[k] != A[i] && k - i != abs(A[k] - A[i]);
return v;
}
public:
nQueens(int n): Enum(n, n) {}
};
int main()
{
nQueens(8).Generate();
return 0;
}
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐于2016-05-29
展开全部
解析:递归实现n皇后问题。
算法分析:
数组a、b、c分别用来标记冲突,a数组代表列冲突,从a[0]~a[7]代表第0列到第7列。如果某列上已经有皇后,则为1,否则为0。
数组b代表主对角线冲突,为b[i-j+7],即从b[0]~b[14]。如果某条主对角线上已经有皇后,则为1,否则为0。
数组c代表从对角线冲突,为c[i+j],即从c[0]~c[14]。如果某条从对角线上已经有皇后,则为1,否则为0。
代码如下:
#include <stdio.h>
static char Queen[8][8];
static int a[8];
static int b[15];
static int c[15];
static int iQueenNum=0; //记录总的棋盘状态数
void qu(int i); //参数i代表行
int main()
{
int iLine,iColumn;
//棋盘初始化,空格为*,放置皇后的地方为@
for(iLine=0;iLine<8;iLine++)
{
a[iLine]=0; //列标记初始化,表示无列冲突
for(iColumn=0;iColumn<8;iColumn++)
Queen[iLine][iColumn]='*';
}
//主、从对角线标记初始化,表示没有冲突
for(iLine=0;iLine<15;iLine++)
b[iLine]=c[iLine]=0;
qu(0);
return 0;
}
void qu(int i)
{
int iColumn;
for(iColumn=0;iColumn<8;iColumn++)
{
if(a[iColumn]==0&&b[i-iColumn+7]==0&&c[i+iColumn]==0)
//如果无冲突
{
Queen[i][iColumn]='@'; //放皇后
a[iColumn]=1; //标记,下一次该列上不能放皇后
b[i-iColumn+7]=1; //标记,下一次该主对角线上不能放皇后
c[i+iColumn]=1; //标记,下一次该从对角线上不能放皇后
if(i<7) qu(i+1); //如果行还没有遍历完,进入下一行
else //否则输出
{
//输出棋盘状态
int iLine,iColumn;
printf("第%d种状态为:\n",++iQueenNum);
for(iLine=0;iLine<8;iLine++)
{
for(iColumn=0;iColumn<8;iColumn++)
printf("%c ",Queen[iLine][iColumn]);
printf("\n");
}
printf("\n\n");
}
//如果前次的皇后放置导致后面的放置无论如何都不能满足要求,则回溯,重置
Queen[i][iColumn]='*';
a[iColumn]=0;
b[i-iColumn+7]=0;
c[i+iColumn]=0;
}
}
}
另外,虚机团上产品团购,超级便宜
算法分析:
数组a、b、c分别用来标记冲突,a数组代表列冲突,从a[0]~a[7]代表第0列到第7列。如果某列上已经有皇后,则为1,否则为0。
数组b代表主对角线冲突,为b[i-j+7],即从b[0]~b[14]。如果某条主对角线上已经有皇后,则为1,否则为0。
数组c代表从对角线冲突,为c[i+j],即从c[0]~c[14]。如果某条从对角线上已经有皇后,则为1,否则为0。
代码如下:
#include <stdio.h>
static char Queen[8][8];
static int a[8];
static int b[15];
static int c[15];
static int iQueenNum=0; //记录总的棋盘状态数
void qu(int i); //参数i代表行
int main()
{
int iLine,iColumn;
//棋盘初始化,空格为*,放置皇后的地方为@
for(iLine=0;iLine<8;iLine++)
{
a[iLine]=0; //列标记初始化,表示无列冲突
for(iColumn=0;iColumn<8;iColumn++)
Queen[iLine][iColumn]='*';
}
//主、从对角线标记初始化,表示没有冲突
for(iLine=0;iLine<15;iLine++)
b[iLine]=c[iLine]=0;
qu(0);
return 0;
}
void qu(int i)
{
int iColumn;
for(iColumn=0;iColumn<8;iColumn++)
{
if(a[iColumn]==0&&b[i-iColumn+7]==0&&c[i+iColumn]==0)
//如果无冲突
{
Queen[i][iColumn]='@'; //放皇后
a[iColumn]=1; //标记,下一次该列上不能放皇后
b[i-iColumn+7]=1; //标记,下一次该主对角线上不能放皇后
c[i+iColumn]=1; //标记,下一次该从对角线上不能放皇后
if(i<7) qu(i+1); //如果行还没有遍历完,进入下一行
else //否则输出
{
//输出棋盘状态
int iLine,iColumn;
printf("第%d种状态为:\n",++iQueenNum);
for(iLine=0;iLine<8;iLine++)
{
for(iColumn=0;iColumn<8;iColumn++)
printf("%c ",Queen[iLine][iColumn]);
printf("\n");
}
printf("\n\n");
}
//如果前次的皇后放置导致后面的放置无论如何都不能满足要求,则回溯,重置
Queen[i][iColumn]='*';
a[iColumn]=0;
b[i-iColumn+7]=0;
c[i+iColumn]=0;
}
}
}
另外,虚机团上产品团购,超级便宜
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询