已知f(x)=2sin(-2x+π/6)+a+1(a为常数)
1.求函数单调递增,递减区间2.求f(x)最小值并求x值3.对称中心4.π/6≤x≤π3时f(x)最小值等于-1,求a5.π/6≤x≤π/3时f(x)最大值为1,求a要过...
1.求函数单调递增,递减区间
2.求f(x)最小值并求x值
3.对称中心
4.π/6≤x≤π3时f(x)最小值等于-1,求a
5.π/6≤x≤π/3时f(x)最大值为1,求a
要过程!!!!!!!正确有加分!!! 展开
2.求f(x)最小值并求x值
3.对称中心
4.π/6≤x≤π3时f(x)最小值等于-1,求a
5.π/6≤x≤π/3时f(x)最大值为1,求a
要过程!!!!!!!正确有加分!!! 展开
展开全部
1、对f(x)求导,得f'(x)=2cos(-2x+π/6)*(-2)=4cos(-2x+π/6)
对函数f'(x)=4cos(-2x+π/6),
当-π/2+2kπ≤-2x+π/6≤π/2+2kπ时,f'(x)≤0,f(x)单调递减,此时-π/6-kπ≤x≤π/3-kπ
当π/2+2kπ≤-2x+π/6≤π+2kπ时,f'(x)≥0,f(x)单调递增,此时-5π/12-kπ≤x≤-π/6-kπ
2、f(x)取得最小值时,必有f'(x)=4cos(-2x+π/6)=0
解得-2x+π/6=π/2+kπ,即x=-π/6-kπ/2
将-2x+π/6=π/2+kπ代入f(x)得:f(x)=2sin(π/2+kπ)+a+1
此时,当k为奇数时,sin(π/2+kπ)=-1;当k为偶数时,sin(π/2+kπ)=1
显然,只有当k取奇数时,f(x)取得最小值为:2sin(π/2+kπ)+a+1=2*(-1)+a+1=a-1
此时,x=-π/6-kπ/2 (k=2n+1,n∈Z)
3、∵函数sin(x)的对称中心为x=π/2+kπ
∴函数f(x)=2sin(-2x+π/6)+a+1的对称中心为:-2x+π/6=π/2+kπ,解得x=-π/6-kπ/2 (k∈Z)
4、若当π/6≤x≤π/3时,f(x)单调递减,∴f(x)的最小值为f(π/3)=-1
即f(π/3)=2sin(-2π/3+π/6)+a+1=2sin(-π/2)+a+1=2*(-1)+a+1=a-1=-1,∴a=0
5、若当π/6≤x≤π/3时,f(x)单调递减,∴f(x)的最大值为f(π/6)=1
即f(π/6)=2sin(-2π/6+π/6)+a+1=2sin(-π/6)+a+1=2*(-1/2)+a+1=a=1,∴a=1
呼!!!头都做晕了,一定要采纳
对函数f'(x)=4cos(-2x+π/6),
当-π/2+2kπ≤-2x+π/6≤π/2+2kπ时,f'(x)≤0,f(x)单调递减,此时-π/6-kπ≤x≤π/3-kπ
当π/2+2kπ≤-2x+π/6≤π+2kπ时,f'(x)≥0,f(x)单调递增,此时-5π/12-kπ≤x≤-π/6-kπ
2、f(x)取得最小值时,必有f'(x)=4cos(-2x+π/6)=0
解得-2x+π/6=π/2+kπ,即x=-π/6-kπ/2
将-2x+π/6=π/2+kπ代入f(x)得:f(x)=2sin(π/2+kπ)+a+1
此时,当k为奇数时,sin(π/2+kπ)=-1;当k为偶数时,sin(π/2+kπ)=1
显然,只有当k取奇数时,f(x)取得最小值为:2sin(π/2+kπ)+a+1=2*(-1)+a+1=a-1
此时,x=-π/6-kπ/2 (k=2n+1,n∈Z)
3、∵函数sin(x)的对称中心为x=π/2+kπ
∴函数f(x)=2sin(-2x+π/6)+a+1的对称中心为:-2x+π/6=π/2+kπ,解得x=-π/6-kπ/2 (k∈Z)
4、若当π/6≤x≤π/3时,f(x)单调递减,∴f(x)的最小值为f(π/3)=-1
即f(π/3)=2sin(-2π/3+π/6)+a+1=2sin(-π/2)+a+1=2*(-1)+a+1=a-1=-1,∴a=0
5、若当π/6≤x≤π/3时,f(x)单调递减,∴f(x)的最大值为f(π/6)=1
即f(π/6)=2sin(-2π/6+π/6)+a+1=2sin(-π/6)+a+1=2*(-1/2)+a+1=a=1,∴a=1
呼!!!头都做晕了,一定要采纳
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询