高一数学根式化简题 刚刚学习不太会做好心人帮忙
1个回答
展开全部
1. [(√2+2)/(a-2√a)+(1-√a)/(a-4√a+4)]÷(1-4/√a)-[(√a+2)/(a-4)]²
={(√2+2)/[√a(√a-2)]+(1-√a)/(√a-2)²}÷[(√a-4)/√a]-[(√a+2)/(a-4)]²
={(√2+2)(√a-2)/[√a(√a-2)^2]+(1-√a)√a/[√a(√a-2)^2]} × [√a/(√a-4)]-[(√a+2)/(a-4)]^2
觉得题目有些问题,你先看第二题吧
2.令t= [1+2√(7/3)/3]^(1/3)]+[1-2√(7/3)/3]^(1/3)],则
t^3=[1+2√(7/3)/3]+[1-2√(7/3)/3]+3{ {[1+2√(7/3)/3]^2 × [1-2√(7/3)/3]} ^(1/3) + {[1+2√(7/3)/3] × [1-2√(7/3)/3]^2} ^(1/3) }
=2+3{ [1+2√(7/3)/3]^(1/3)]+[1-2√(7/3)/3]^(1/3)] × (-1/3)}
=2-t
=> t^3+t-2=0,
=> (t^2+t+2)(t-1)=0,
=> t=1
化简得1
={(√2+2)/[√a(√a-2)]+(1-√a)/(√a-2)²}÷[(√a-4)/√a]-[(√a+2)/(a-4)]²
={(√2+2)(√a-2)/[√a(√a-2)^2]+(1-√a)√a/[√a(√a-2)^2]} × [√a/(√a-4)]-[(√a+2)/(a-4)]^2
觉得题目有些问题,你先看第二题吧
2.令t= [1+2√(7/3)/3]^(1/3)]+[1-2√(7/3)/3]^(1/3)],则
t^3=[1+2√(7/3)/3]+[1-2√(7/3)/3]+3{ {[1+2√(7/3)/3]^2 × [1-2√(7/3)/3]} ^(1/3) + {[1+2√(7/3)/3] × [1-2√(7/3)/3]^2} ^(1/3) }
=2+3{ [1+2√(7/3)/3]^(1/3)]+[1-2√(7/3)/3]^(1/3)] × (-1/3)}
=2-t
=> t^3+t-2=0,
=> (t^2+t+2)(t-1)=0,
=> t=1
化简得1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |