展开全部
1.)当n=2时
原式=1/3+1/4+1/5+1/6=57/60 >5/6
2.)假设当n=k时,(k为任意大于2的数)存在
1/(k+1)+1/(k+2)+1/(k+3)+…+1/3k >5/6
3.)所以,当n=k+1时
原式=1/(k+2)+1/(k+3)+1/(k+4)+…+1/3k+1/(3k+1)+1/(3k+2)+1/(3k+3)
(从这里我们可以看出,只要证明1/(3k+1)+1/(3k+2)+1/(3k+3)>1/(k+1)那么这个不等式必然成立)
所以由1/(3k+1)+1/(3k+2)+1/(3k+3)-1/(k+1)=1/(3k+1)-1/(3k+3)+1/(3k+2)-1/(3k+3)>0
不等式得证
中间你可以再加几句啥啥推出啥的(打字太麻烦我就不详细写出来了)然后就可以啦~)
希望可以帮到你~
原式=1/3+1/4+1/5+1/6=57/60 >5/6
2.)假设当n=k时,(k为任意大于2的数)存在
1/(k+1)+1/(k+2)+1/(k+3)+…+1/3k >5/6
3.)所以,当n=k+1时
原式=1/(k+2)+1/(k+3)+1/(k+4)+…+1/3k+1/(3k+1)+1/(3k+2)+1/(3k+3)
(从这里我们可以看出,只要证明1/(3k+1)+1/(3k+2)+1/(3k+3)>1/(k+1)那么这个不等式必然成立)
所以由1/(3k+1)+1/(3k+2)+1/(3k+3)-1/(k+1)=1/(3k+1)-1/(3k+3)+1/(3k+2)-1/(3k+3)>0
不等式得证
中间你可以再加几句啥啥推出啥的(打字太麻烦我就不详细写出来了)然后就可以啦~)
希望可以帮到你~
展开全部
证明:
设不等式左边=f(n)
n=2时 f(2)=1/3+1/4+1/5+1/6=19/20>5/6
假设当n=k 时 f(k)=1/(k+1)+1/(k+2)+...+1/3k>5/6 成立
则 当n=k+1时
f(k+1)=1/(k+1+1) +1/(k+1+2)+......+1/(3k+1-1)+1/(3k+1)+1/(3k+2)+1/(3k+3)
f(K+1)=f(k)+1/(3k+1)+1/(3k+2)+1/(3k+3)-1/(k+1)
又1/(3K+1)+1/(3K+2)+1/(3K+3)-1/(k+1)>0
f(k)>5/6
所以f(k+1)>5/6
所以原不等式成立
设不等式左边=f(n)
n=2时 f(2)=1/3+1/4+1/5+1/6=19/20>5/6
假设当n=k 时 f(k)=1/(k+1)+1/(k+2)+...+1/3k>5/6 成立
则 当n=k+1时
f(k+1)=1/(k+1+1) +1/(k+1+2)+......+1/(3k+1-1)+1/(3k+1)+1/(3k+2)+1/(3k+3)
f(K+1)=f(k)+1/(3k+1)+1/(3k+2)+1/(3k+3)-1/(k+1)
又1/(3K+1)+1/(3K+2)+1/(3K+3)-1/(k+1)>0
f(k)>5/6
所以f(k+1)>5/6
所以原不等式成立
追问
O(∩_∩)O~
谢谢了哦
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
不等式的右边是常数,因此不能用数归来做。
令Sn=1/(n+1)+1/(n+2)+1/(n+3)+…+1/3n则S(n+1)=1/(n+2)+1/(n+3)+1/(n+3)+…+1/(3n+3)
S(n+1)-Sn=1/(3n+1)+1/(3n+2)-2/(3n+3)>0
∴Sn单调递增
当n=2时,左边=1/3+1/4+1/5+1/6>5/6
∴原不等式成立
青纭回答的最后两步错了
令Sn=1/(n+1)+1/(n+2)+1/(n+3)+…+1/3n则S(n+1)=1/(n+2)+1/(n+3)+1/(n+3)+…+1/(3n+3)
S(n+1)-Sn=1/(3n+1)+1/(3n+2)-2/(3n+3)>0
∴Sn单调递增
当n=2时,左边=1/3+1/4+1/5+1/6>5/6
∴原不等式成立
青纭回答的最后两步错了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1.当n=2时,有1/3+1/4+1/5+1/6=57/60>5/6,命题成立。
2.假设当n=k时,命题成立,即有1/(k+1)+1/(k+2)+^+1/3k>5/6,则当n=k+1时,1/(k+2)+1/(k+3)+^+1/3k+1/(3k+1)+1/(3k+2)+1/(3k+3)=1/(k+1)+1/(k+2)+^+1/3k+{1/(3k+1)+1/(3k+2)+1/(3k+3)-1/(k+1)},只要证1/(3k+1)+1/(3k+2)+1/(3k+3)-1/(k+1)>0,而1/(3k+1)>1/(3k+3),1/(3k+2)>1/(3k+3),有1/(3k+1)+1/(3k+2)+1/(3k+3)>3*1/(3k+3)=1/(k+1),得证。
3.综上,命题对于n≥2均成立。
2.假设当n=k时,命题成立,即有1/(k+1)+1/(k+2)+^+1/3k>5/6,则当n=k+1时,1/(k+2)+1/(k+3)+^+1/3k+1/(3k+1)+1/(3k+2)+1/(3k+3)=1/(k+1)+1/(k+2)+^+1/3k+{1/(3k+1)+1/(3k+2)+1/(3k+3)-1/(k+1)},只要证1/(3k+1)+1/(3k+2)+1/(3k+3)-1/(k+1)>0,而1/(3k+1)>1/(3k+3),1/(3k+2)>1/(3k+3),有1/(3k+1)+1/(3k+2)+1/(3k+3)>3*1/(3k+3)=1/(k+1),得证。
3.综上,命题对于n≥2均成立。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:设f(n)=(1/n+1)+(1/n+2)+......+(1/3n),n≥2
(1)因为n≥2, 当n=2时
则 f(2)--5/6=1/3+1/4+1/5+1/6+1/7+1/8+1/9-5/6
=(1/ 5+1/7)+(1/3+1/9)+(1/4+1/8)-(5/6-1/6)
=(1/ 5+1/7)+4/9+3/8-2/3
=12/35 +3/8 -2/9
=12/35 +11/72 >0
所以,原不等式成立。
(2)假设当n=k时,(k为任意大于2的数)存在
1/(k+1)+1/(k+2)+1/(k+3)+…+1/3k >5/6
当n=k+1时,
f(k+1)=(1/k+2)+......+(1/3k)+(1/3k+1)+(1/3k+2)+(1/3k+3)
∴f(k+1)-f(k)=(1/3k+1)+(1/3k+2)+(1/3k+3)-(1/k+1)
>(1/3k+3)+(1/3k+3)+(1/3k+3)+(1/k+1)=0
∴f(n)在N+上是单调递增的
故f(n)>f(2)>1/3+1/4+1/5+1/6=57/60>5/6
所以,原不等式成立。
(1)因为n≥2, 当n=2时
则 f(2)--5/6=1/3+1/4+1/5+1/6+1/7+1/8+1/9-5/6
=(1/ 5+1/7)+(1/3+1/9)+(1/4+1/8)-(5/6-1/6)
=(1/ 5+1/7)+4/9+3/8-2/3
=12/35 +3/8 -2/9
=12/35 +11/72 >0
所以,原不等式成立。
(2)假设当n=k时,(k为任意大于2的数)存在
1/(k+1)+1/(k+2)+1/(k+3)+…+1/3k >5/6
当n=k+1时,
f(k+1)=(1/k+2)+......+(1/3k)+(1/3k+1)+(1/3k+2)+(1/3k+3)
∴f(k+1)-f(k)=(1/3k+1)+(1/3k+2)+(1/3k+3)-(1/k+1)
>(1/3k+3)+(1/3k+3)+(1/3k+3)+(1/k+1)=0
∴f(n)在N+上是单调递增的
故f(n)>f(2)>1/3+1/4+1/5+1/6=57/60>5/6
所以,原不等式成立。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询