行星为什么会自转?
形成太阳系的原始星云原来就带有角动量,在形成太阳和行星系统之后,它的角动量不会损失,但必然发生重新分布,各个星体在漫长的积聚物质的过程中分别从原始星云中得到了一定的角动量。由于角动量守恒,各行星在收缩过程中转速也将越来越快。
地球也不例外,它所获得的角动量主要分配在地球绕太阳的公转,地月系统的相互绕转和地球的自转中,这就是地球自转的由来,但要真正分析地球和其他各大行星的公转运动和自转运动还需要科学家们做大量的研究工作。
这就是说,在地球的形成过程中,运动——尤其指旋转,自始至终伴随着地球的形成过程而不是地球形成之后再在某种原因下开始自转或公转的。
太阳系的前身是一团密云,受某种力量驱使,使它彼此相吸,这个吸积过程,使密度稀的逐渐变大,这就加速吸积过程。原始太阳星云中的质点最初处在混沌状,横冲直闯,逐渐把无序状态变成有序状态,一方面,向心吸积聚变为太阳,另外,就使得这团气体逐渐向扁平状发展,发展的过程中,势能变成动能,最终整个转起来了。
开始转时,有这么转的,有那么转的,在某一个方向占上风之后,都变成了一个方向,这个方向就是现在发现的右手定则,也许有其他太阳系是左手定则,但在我们这个太阳系是右手定则。地球自转的能量来源就是由物质势能最后变成动能所致,最终是地球一方面公转,一方面自转。
扩展资料:
一般而言,自转轴都会穿越天体的质心。凡卫星、行星、恒星、星系绕着自己的轴心转动﹐谓之自转。地球自转一周的时间是23小时56分4秒;月亮自转一周的时间跟它绕地球公转一周的时间相同﹐都是27天7小时43分11.5秒。地球自转轴与黄道面成66.34度夹角。沿著自转轴转动的球体
地球同太阳系其他八大行星一样,在绕太阳公转的同时。围绕着一根假想的自转轴在不停地转动,这就是地球的自转。
现代天文学理论认为,太阳系是由所谓的原始星云形成的,原始星云是一大片十分稀薄的气体云,50亿年前受某种扰动影响,在引力的作用下向中心收缩。经过漫长时期的演化,中心部分物质的密度越来越大,温度也越来越高,终于达到可以引发热核反应的程度,而演变成了太阳。
在太阳周围的残余气体则逐渐形成一个旋转的盘状气体层,经过收缩、碰撞、捕获、积聚等过程,在气体层中逐步聚集成固体颗粒、微行星、原始行星,最后形成一个个独立的大行星和小行星等太阳系天体。
参考资料来源:百度百科-自转
因为大爆炸之后,各种星体在引力的作用下产生了角动量,旋转的速度得到加快。随着一个恒星系统的稳定,这种旋转也会稳定下来。在太空中既然已经形成了角动量和旋转力,行星就会自传。
因为几乎是在真空中,没有任何阻力,如果没有外来因素的影响,这种转动就会永远的继续下去。
在宇宙发展到一定时期,在星系、恒星和行星的形成过程中,运动——尤其指旋转,自始至终伴随着恒星和行星的形成过程,而不是之后再在某种原因下才开始自转或公转的。
宇宙中充满均匀的中性原子气体云,大体积气体云由于自身星球的转动时宇宙大爆炸初始的能量以及后期引力和斥力导致的,在无阻力的太空中这种转动不会轻易改变。
太阳系是银河系几千亿颗恒星中一颗很普通的恒星系统,太阳系也在围绕着银河系中心旋转,旋转一个周期大概需要2.5亿年。银河系又是本星系团几十个星系中的一个,也在围绕着本星系团中心进行公转,大约要1000亿年转一圈。
扩展资料
至今为止在太阳系内一共已经发现了约70万颗小行星,但这可能仅是所有小行星中的一小部分,只有少数这些小行星的直径大于100千米。到1990年代为止最大的小行星是谷神星,在柯伊伯带(Kuiper Belt)内发现的一些小行星的直径比谷神星要大。
2002年发现的夸欧尔(Quaoar)直径为1280千米,2004年发现的2004 DW的直径甚至达1800千米。2003年发现的塞德娜(小行星90377)位于柯伊伯带以外,其直径约为1500千米。
根据估计,小行星的数目大概可能会有50万。最大的小行星直径也只有1000 公里左右,微型小行星则只有鹅卵石一般大小。
直径超过 240 公里的小行星约有 16 个。它们都位于地球轨道内侧到土星的轨道外侧的太空中。而绝大多数的小行星都集中在火星与木星轨道之间的小行星带。其中一些小行星的运行轨道与地球轨道相交,曾有某些小行星与地球发生过碰撞。
小行星是太阳系形成后的物质残余。有一种推测认为,它们可能是一颗神秘行星的残骸,这颗行星在远古时代遭遇了一次巨大的宇宙碰撞而被摧毁。但从这些小行星的特征来看,它们并不像是曾经集结在一起。
参考资料来源:百度百科-行星
比如说 你不动,那是你在有意的反抗这种动,宇宙中的天体不会这样,只能靠自转来维持平衡