计算1+1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+……1/(1+2+3+……+100)
2个回答
展开全部
注意观察,第 N 个加式可以表述成:
1/(1 + 2 + 3 + ... + n)
= 1/[n(n + 1)/2]
= 2/[n(n + 1)]
= 2[1/n - 1/(n + 1)]
那么有:
1/1 + 1/(1 + 2) + 1/(1 + 2 + 3) + .... + 1/(1 + 2 + 3 + ... + 100)
= 1 + 2/(2*3) + 2/(3*4) + .... + 2/(100*101)
= 1 + 2*(1/2 - 1/3) + 2*(1/3 - 1/4) + ... + 2*(1/100 - 1/101)
= 1 + 2*(1/2 - 1/101)
= 2 - 2/101
= 200/101
1/(1 + 2 + 3 + ... + n)
= 1/[n(n + 1)/2]
= 2/[n(n + 1)]
= 2[1/n - 1/(n + 1)]
那么有:
1/1 + 1/(1 + 2) + 1/(1 + 2 + 3) + .... + 1/(1 + 2 + 3 + ... + 100)
= 1 + 2/(2*3) + 2/(3*4) + .... + 2/(100*101)
= 1 + 2*(1/2 - 1/3) + 2*(1/3 - 1/4) + ... + 2*(1/100 - 1/101)
= 1 + 2*(1/2 - 1/101)
= 2 - 2/101
= 200/101
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询