是的,有些数独的答案不唯一。
给出最少数字且有唯一解的数独。数独初盘最少可以有17个数。与数独终盘相对应,一个数独游戏给出的初始条件称为初盘。由于规则所限,给出的初盘数字个数必须在32以下。一般常见的初盘数字个数在22—28之间,而数独爱好者们常问的一个问题是:最少给出多少个数字,数独游戏才确保有唯一解?具体地说:最少需要在初盘中给出多少个数字,使得移除其中任何一个数字该数独游戏便没有唯一解。
事实上,这个问题是数独中最有数学趣味的问题之一,并且至今仍未得到解决。但数学家们估计,这个数字很可能是17.17个数字的最小唯一解初盘是由一名日本数独爱好者发现的。澳大利亚数学家GordonRoyle已经收集了36628个17个数字的唯一解初盘,而爱尔兰数学家Gary McGuire则致力于寻找16个数字的唯一解初盘,但至今仍无发现。部分数学家开始退而求其次,转而寻找只有两个解的17个数字初盘。
统计学家根据一个统计学原理曾随机地构造了大量17个数字的初盘,发现其中有唯一解的初盘只有数个未被GordonRoyle教授发现,这意味着,最小唯一解初盘问题的最终答案可能正是17:因为从理论上说,如果16个数字的唯一解终盘存在,那么每一个必将引起65个17个数字唯一解终盘的增加,而在研究中至今没有观察到这一效应。
。。。。
给出最少数字且有唯一解的数独
数独初盘最少可以有17个数。 与数独终盘相对应,一个数独游戏给出的初始条件称为初盘。由于规则所限,给出的初盘数字个数必须在32以下。 一般常见的初盘数字个数在22—28之间,而数独爱好者们常问的一个问题是:最少给出多少个数字,数独游戏才确保有唯一解?具体地说:最少需要在初盘中给出多少个数字,使得移除其中任何一个数字该数独游戏便没有唯一解。
事实上,这个问题是数独中最有数学趣味的问题之一,并且至今仍未得到解决。但数学家们估计,这个数字很可能是17.17个数字的最小唯一解初盘是由一名日本数独爱好者发现的。澳大利亚数学家GordonRoyle已经收集了36628个17个数字的唯一解初盘,而爱尔兰数学家Gary McGuire则致力于寻找16个数字的唯一解初盘,但至今仍无发现。部分数学家开始退而求其次,转而寻找只有两个解的17个数字初盘。
统计学家根据一个统计学原理曾随机地构造了大量17个数字的初盘,发现其中有唯一解的初盘只有数个未被GordonRoyle教授发现,这意味着,最小唯一解初盘问题的最终答案可能正是17:因为从理论上说,如果16个数字的唯一解终盘存在,那么每一个必将引起65个17个数字唯一解终盘的增加,而在研究中至今没有观察到这一效应
。。。。。。以上百度百科的文字
此外,说点题外话,因为楼主的提问实际上事很多人讨论过的,有些人甚至得出了多解的数独不能算数独的荒谬结论。
我们先明确下数独的定义:数独盘面是个九宫,每一宫又分为九个小格。在这八十一格中给出一定的已知数字和解题条件,利用逻辑和推理,在其他的空格上填入1-9的数字。使1-9每个数字在每一行、每一列和每一宫中都只出现一次。
简单点说,只要每行、每列和每一个宫中1-9出现一次不重复,那这样的九宫就是数独。
所以,有些数独虽然也多解,但肯定也是数独,只能说是一种较为特殊的数独而已。
多择答案的数独题目也有,但常理下我们判定为非标准题目。即不合格的题目。
正规比赛中,多答案题目是不可能出现的。
你要理由?很让人为难,9*9的排列组合,出现多选择是正常的,虽然错的无意义。
17个数以上也可能没有唯一解。