若一个等差数列an的前3项和为34,最后3项的和为46,其所有项的和为390,则这个数列有多少项
3个回答
展开全部
解:a1+a2+a3=34
an+a(n-1)+a(n-2)=46
∵ a1+an=a2+an-1=a3+an-2,
∴ 34+46=3(a1+an),
a1+an=80/3.
∴ 390=n/2 * (a1+an)
n=390*2*3/80=29.25 (n的数值为非整数,说明已知条件的数据不合理。)
若 最后3项的和为46改为56
则: n=390*2*3/(34+56)=26
an+a(n-1)+a(n-2)=46
∵ a1+an=a2+an-1=a3+an-2,
∴ 34+46=3(a1+an),
a1+an=80/3.
∴ 390=n/2 * (a1+an)
n=390*2*3/80=29.25 (n的数值为非整数,说明已知条件的数据不合理。)
若 最后3项的和为46改为56
则: n=390*2*3/(34+56)=26
追问
最后3项的和为146,开始打错了sorry
追答
解:a1+a2+a3=34
an+a(n-1)+a(n-2)=146
∵ a1+an=a2+an-1=a3+an-2,
∴ 34+146=3(a1+an),
a1+an=60
∴ 390=n/2 * (a1+an)
n=390*2*3/(34+146)=13
答: 这个数列有13项
展开全部
34=3a2, a2=34/3
46=3a(n-1), a(n-1)=46/3
390=[a2+a(n-1)]*n/2=40n/3
n=39*3/4 ?给出的数不对呀
46=3a(n-1), a(n-1)=46/3
390=[a2+a(n-1)]*n/2=40n/3
n=39*3/4 ?给出的数不对呀
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(34+64)/3=54=a1+an
Sn=n/2*54=390 所以n=
Sn=n/2*54=390 所以n=
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询