展开全部
解:
由于{an}为等差数列,故:
a3=a1+2d, a7=a1+6d
a3+a7=2a1+8d=2+8d=10
解得:
d=1
故:
an=a1+(n-1)d=1+(n-1)
=n (n属于N+)
所以:
a4=4
由于{bn}为正项等比数列,故:
b3=b1.q^2=q^2
b3=q^2=a4=4
因为为正项等比数列,故:q>0
解得:
q=2
则:
bn=b1.q^(n-1)=q^(n-1)
=2^(n-1) (n属于N+)
cn=an.bn
=n.2^(n-1) (n属于N+)
因此:
Tn=c1+c2+c3+……+cn
=1+2x2+3x2^2+……+nx2^(n-1)
2Tn=2+2x2^2+3x2^3+……+nx2^n
两式相减得:
2Tn-Tn=Tn
=-1+(2-2x2)+(2x2^2-3x2^2)+(3x2^3-4x2^3)+……+[(n-1)x2^(n-1)-nx2^(n-1)]+nx2^n
=nx2^n-1-[2+2^2+2^3+……+2^(n-1)]
=nx2^n-[2^0+2+2^2+2^3+……+2^(n-1)]
=nx2^n - (2^n-1)
=nx2^n-2^n+1
=(n-1)2^n+1 (n属于N+)
希望对楼主有帮助,如果有不清楚的地方再跟我说吧!
由于{an}为等差数列,故:
a3=a1+2d, a7=a1+6d
a3+a7=2a1+8d=2+8d=10
解得:
d=1
故:
an=a1+(n-1)d=1+(n-1)
=n (n属于N+)
所以:
a4=4
由于{bn}为正项等比数列,故:
b3=b1.q^2=q^2
b3=q^2=a4=4
因为为正项等比数列,故:q>0
解得:
q=2
则:
bn=b1.q^(n-1)=q^(n-1)
=2^(n-1) (n属于N+)
cn=an.bn
=n.2^(n-1) (n属于N+)
因此:
Tn=c1+c2+c3+……+cn
=1+2x2+3x2^2+……+nx2^(n-1)
2Tn=2+2x2^2+3x2^3+……+nx2^n
两式相减得:
2Tn-Tn=Tn
=-1+(2-2x2)+(2x2^2-3x2^2)+(3x2^3-4x2^3)+……+[(n-1)x2^(n-1)-nx2^(n-1)]+nx2^n
=nx2^n-1-[2+2^2+2^3+……+2^(n-1)]
=nx2^n-[2^0+2+2^2+2^3+……+2^(n-1)]
=nx2^n - (2^n-1)
=nx2^n-2^n+1
=(n-1)2^n+1 (n属于N+)
希望对楼主有帮助,如果有不清楚的地方再跟我说吧!
展开全部
an=a1+(n-1)d bn=b1*q^(n-1)
由已知可得:
d=1 q=2或-2 an=n bn=2^(n-1)或(-2)^(n-1)
(1)当q=2时:
Cn=an*bn=n*2^n-1
所以:Tn=n*(2^0+2^1+2^2+。。。+2^n-1)=n(2^n)-1
(2)当q=(-2)时
Cn=n*(-2)^n-1
所以:Tn=n*[(-2)^0+(-2)^1+(-2)^2+。。。+(-2)^n-1]=n*[(1/3-(-2)^n/3]
由已知可得:
d=1 q=2或-2 an=n bn=2^(n-1)或(-2)^(n-1)
(1)当q=2时:
Cn=an*bn=n*2^n-1
所以:Tn=n*(2^0+2^1+2^2+。。。+2^n-1)=n(2^n)-1
(2)当q=(-2)时
Cn=n*(-2)^n-1
所以:Tn=n*[(-2)^0+(-2)^1+(-2)^2+。。。+(-2)^n-1]=n*[(1/3-(-2)^n/3]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询