等比数列{an}中,(a1+a3+a5)-(a2+a4)=4,(a1^2+a3^2+a5^2)+(a2^2+a4^2)=36
展开全部
,(a1+a3+a5)-(a2+a4)=a3(q^2+1/q^2-q-1/q)=4
,(a1^2+a3^2+a5^2)+(a2^2+a4^2)=a3^2(q^4+1/q^4-q^2-1/q^2)=36
(a1+a3+a5)+(a2+a4)=a3(q^2+1/q^2+q+1/q)=x
4x=a3^2[(q^2+1/q^2)+(q+1/q)][(q^2+1/q^2)-(q+1/q)]=a3^2(q^4+1/q^4-q^2-1/q^2)=36
x=9
,(a1^2+a3^2+a5^2)+(a2^2+a4^2)=a3^2(q^4+1/q^4-q^2-1/q^2)=36
(a1+a3+a5)+(a2+a4)=a3(q^2+1/q^2+q+1/q)=x
4x=a3^2[(q^2+1/q^2)+(q+1/q)][(q^2+1/q^2)-(q+1/q)]=a3^2(q^4+1/q^4-q^2-1/q^2)=36
x=9
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(a1+a3+a5)-(a2+a4)
=(a1+a1p^2+a1p^4)-(a1p+a1p^3)
=a1(1-p+p^2-p^3+p^4)
=a1(p^5+1)/(p+1)=4
(a1^2+a3^2+a5^2)+(a2^2+a4^2)
=(a1^2+a1^2p^4+a1^2p^8)+(a1^2p^2+a1^2p^6)
=a1^2(1+p^2+p^4+p^6+p^8)
=a1^2(p^10-1)/(p^2-1)
=a1^2(p^5+1)(p^5-1)/(p+1)(p-1)
=[a1(p^5+1)/(p+1)][a1(p^5-1)/(p-1)]
=4a1(p^5-1)/(p-1)=36
∴a1(p^5-1)/(p-1)=9
a1(p^5-1)/(p-1)
=a1(1+p+p^2+p^3+p^4)
=(a1+a1p^2+a1p^4)+(a1p+a1p^3)
=(a1+a3+a5)+(a2+a4)
=9
=(a1+a1p^2+a1p^4)-(a1p+a1p^3)
=a1(1-p+p^2-p^3+p^4)
=a1(p^5+1)/(p+1)=4
(a1^2+a3^2+a5^2)+(a2^2+a4^2)
=(a1^2+a1^2p^4+a1^2p^8)+(a1^2p^2+a1^2p^6)
=a1^2(1+p^2+p^4+p^6+p^8)
=a1^2(p^10-1)/(p^2-1)
=a1^2(p^5+1)(p^5-1)/(p+1)(p-1)
=[a1(p^5+1)/(p+1)][a1(p^5-1)/(p-1)]
=4a1(p^5-1)/(p-1)=36
∴a1(p^5-1)/(p-1)=9
a1(p^5-1)/(p-1)
=a1(1+p+p^2+p^3+p^4)
=(a1+a1p^2+a1p^4)+(a1p+a1p^3)
=(a1+a3+a5)+(a2+a4)
=9
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询