a.b为实数,并且满足4a²+b²+ab=1 则2a+b的最大值是多少?请给详细步骤

realjay
2011-07-13 · TA获得超过154个赞
知道答主
回答量:24
采纳率:0%
帮助的人:0
展开全部
最大值为2√10/5。
方法1、设t=2a+b,则有4a^2+(t-2a)^2+a(t-2a)=1,化简为:6*(a-t/4)^2=1-10t^2/16,等式恒成立,则有1-10t^2/16≥0,解得:-2√10/5≤t≤2√10/5。
方法2、设t=2a+b,则有4a^2+(t-2a)^2+a(t-2a)=1,
化简为:6a^2-3at+t^2-1=0
因为a属于R,要使该式有解,【可以看成关于a的一元二次方程,t为一未知数】
则△≥0,
可解得到:-2√10/5≤t≤2√10/5。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式