设x=(√5+1)/2,求(x^3+x+1)/x^4的值
2个回答
展开全部
x=(√5+1)/2
x^4 = ( 25+ 4(5√5)+6(5) + 4(√5) + 1 ) /16
= (7+ 3√5) /2
x^3 = 5√5 + 3(5) + 3√5 + 1
= 16+8√5
x^3+x+1 = 16+8√5 + (√5+1)/2 +1
= (35+17√5)/2
(x^3+x+1)/x^4
=[(35+17√5)/2]/[(7+ 3√5) /2]
= (35+17√5)(7-3√5)/4
=(14√5-10)/4
= (7√5 -5)/2
x^4 = ( 25+ 4(5√5)+6(5) + 4(√5) + 1 ) /16
= (7+ 3√5) /2
x^3 = 5√5 + 3(5) + 3√5 + 1
= 16+8√5
x^3+x+1 = 16+8√5 + (√5+1)/2 +1
= (35+17√5)/2
(x^3+x+1)/x^4
=[(35+17√5)/2]/[(7+ 3√5) /2]
= (35+17√5)(7-3√5)/4
=(14√5-10)/4
= (7√5 -5)/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询