f(x),g(x)均为奇函数,H(x)=af(x)+bg(x)+2在 (0 ~正无穷)有最大值5,H(x)在(负无穷~0)上的最小值

f(x).g(x)均为奇函数.h(x)=af(x)+bg(x)+2在(0~正无穷)上有最大值5.求h(x)在(负无穷~0)上的最小值。... f(x).g(x)均为奇函数.h(x)=af(x)+bg(x)+2在(0~正无穷)上有最大值5.求h(x)在(负无穷~0)上的最小值。 展开
is围观群众
2011-07-13 · TA获得超过118个赞
知道答主
回答量:19
采纳率:0%
帮助的人:0
展开全部
H(-x)=af(-x)+bg(-x)+2=-[af(x)+bg(x)]+2,x在(0,正无穷)
则-x在(负无穷,0)
H(x)最大为5,所以af(x)+bg(x)最大为3
所以-[af(x)+bg(x)]最小为-3
所以H(x)在(负无穷,0)上最小值为-3+2=-1
综上所诉,为-1
AlwaysbeMIN
2011-07-22
知道答主
回答量:2
采纳率:0%
帮助的人:0
展开全部
解:设x小于0,则-x大于0。
h(-x)=af(-x)+bg(-x)+2=5
因为f(x),g(x)都是奇函数,所以f(-x)=-f(x),g(-x)=-g(x),h(-x)=-h(x)。
所以h(-x)=-af(x)-bg(x)+2=5
则-h(x)=-af(x)-bg(x)+2=5
即h(x)=af(x)+bg(x)-2=3-2=1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
美好且谦和的小萨摩耶5059
2011-07-25 · TA获得超过6.5万个赞
知道大有可为答主
回答量:5.1万
采纳率:0%
帮助的人:6679万
展开全部
是-1
奇函数加奇函数仍为奇函数由奇函数性质可知当x=0时H(x)=2故H(x)的对称轴为x=2所以H(x)max+H(x)max=2*2=4所以最小值为-1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式