方程怎样化成椭圆的标准方程
1个回答
展开全部
最好能用具体例子。否则即使回答清楚了,只怕也难得看得明白。
Ax²+By²+Cx+Dy+E=0 这是椭圆方程的一般型;
1)将各坐标分别整理成二次项系数为“1”的二次三项式:(若需添补常数项时则添补)
A(x²+Cx/A+C²/4A²)+B(y²+Dy/B+D²/4B²)+E-C²/4A-D²/4B=0;
2)对方程逐步整理,使成标准型:
A(x+C/2A)²+B(y+D/2B)²=C²/4A+D²/4B-E
{A[x-(-C/2A)]²/(C²/4A+D²/4B-E)}+{B[y-(-D/2B)]²/(C²/4A+d²/4B-E)]=1
[x-(-C/2A)]²/[(C²/4A+D²/4B-E)/A]+[y-(-D/2B)]²/[(C²/4A+D²/4B-E)/B]=1
即化成了中心在点(-C/2A,-D/2B)
长半轴 a=√[(C²/4A+D²/4B-E)/A] (焦点在x轴)
或√[(C²/4A+D²/4B-E)/B] (焦点在y轴)
短半轴 b=√[C²/4A+D²/4B-E)/B] (焦点在x轴)
或√[C²/4A+D²/4B-E)/A] (焦点在y轴)
的标准方程了。
Ax²+By²+Cx+Dy+E=0 这是椭圆方程的一般型;
1)将各坐标分别整理成二次项系数为“1”的二次三项式:(若需添补常数项时则添补)
A(x²+Cx/A+C²/4A²)+B(y²+Dy/B+D²/4B²)+E-C²/4A-D²/4B=0;
2)对方程逐步整理,使成标准型:
A(x+C/2A)²+B(y+D/2B)²=C²/4A+D²/4B-E
{A[x-(-C/2A)]²/(C²/4A+D²/4B-E)}+{B[y-(-D/2B)]²/(C²/4A+d²/4B-E)]=1
[x-(-C/2A)]²/[(C²/4A+D²/4B-E)/A]+[y-(-D/2B)]²/[(C²/4A+D²/4B-E)/B]=1
即化成了中心在点(-C/2A,-D/2B)
长半轴 a=√[(C²/4A+D²/4B-E)/A] (焦点在x轴)
或√[(C²/4A+D²/4B-E)/B] (焦点在y轴)
短半轴 b=√[C²/4A+D²/4B-E)/B] (焦点在x轴)
或√[C²/4A+D²/4B-E)/A] (焦点在y轴)
的标准方程了。
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询