k为何值时,方程(k^-1)x^-6(3k-1)x+72等于0有两个不相等的正整数根

 我来答
乘方的乘方
2011-07-16 · TA获得超过7387个赞
知道大有可为答主
回答量:1600
采纳率:73%
帮助的人:502万
展开全部
解:首先[6(3k-1)]^2-4(k^2-1)*72>0
得(k-3)^2>0得k≠3,
又(k^2-1)≠0得k≠±1
因为x1+x2=72/(x^2-1)
若两根为整数,(k^2-1)为72的因数,而72的因数只能为1,2,3,4,6,8,9,12,18,24,36,72
所以k^2-1=1,2,3,4,6,8,9,12,18,24,36,72
k=±√2,±√3,±√4,±√5,±√7,±√9,±√10,±√13,±√19,±√25,±√37,±√73
只讨论k=±√4,±√9,±√25就可以了
所以k=±2,-3,-5
k为2,-2,-3,-5时,方程(k^-1)x^-6(3k-1)x+72等于0有两个不相等的正整数根
好囧股
2012-06-23
知道答主
回答量:4
采纳率:0%
帮助的人:6340
展开全部
解 原方程变形、因式分解为
  (k+1)(k-1)x2-6(3k-1)x+72=0, [(k+1)x-12][(k-1)x-6]=0,
  即
   4,7.所以k=2,3使得x1,x2同时为正整数,但当k=3时,x1=x2=3,与题目不符,所以,只有k=2为所求.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式