如图①,凸四边形ABCD,如果点P满足∠APD=∠APB=α。且∠B P C =∠CPD =β,则称点P为四边形 ABCD的一个

如图(l),凸四边形ABCD,如果点P满足∠APD=∠APB=α。且∠BPC=∠CPD=β,则称点P为四边形ABCD的一个半等角点.(l)在图(3)正方形ABCD内画一个... 如图( l ) ,凸四边形 ABCD ,如果点P满足∠APD =∠APB =α。且∠B P C =∠CPD =β,则称点P为四边形 ABCD的一个半等角点.
( l )在图( 3 )正方形 ABCD 内画一个半等角点P,且满足α≠β。
( 2 )在图( 4 )四边形 ABCD 中画出一个半等角点P,保留画图痕迹(不需写出画法) .
( 3 )若四边形 ABCD 有两个半等角点P1 、P2(如图( 2 ) ) ,证明线段P1 P2上任一点也是它的半等角点 。
谢谢了
展开
颗棵树
2011-07-21
知道答主
回答量:4
采纳率:0%
帮助的人:3.3万
展开全部
(1)根据题意可知,所画的点P在AC上且不是AC的中点和AC的端点.因为在图形内部,所以不能是AC的端点,又由于α≠β,所以不是AC的中点.
(2)画点B关于AC的对称点B’,延长DB’交AC于点P,点P为所求.(因为对称的两个图形完全重合)
(3)先连P1A、P1D、P1B、P1C和P2D、P2B,根据题意∠AP1D=∠AP1B,∠DP1C=∠BP1C∴∠AP1B+∠BP1C=180度.∴P1在AC上,同理,P2也在AC上,再利用ASA证明△DP1P2≌△BP1P2而,那么△P1DP2和△P1BP2关于P1P2对称,P是对称轴上的点,所以∠DPA=∠BPA,∠DPC=∠BPC.即点P是四边形的半等角点.解答:解:(1)所画的点P在AC上且不是AC的中点和AC的端点,即给(4分).

(2)画点B关于AC的对称点B’,延长DB’交AC于点P,点P为所求(不写文字说明不扣分)给(3分).
(说明:画出的点P大约是四边形ABCD的半等角点,而无对称的画图痕迹,给1分)

(3)连P1A、P1D、P1B、P1C和P2D、P2B,根据题意,
∠AP1D=∠AP1B,∠DP1C=∠BP1C,
∴∠AP1B+∠BP1C=180度.
∴P1在AC上,
同理,P2也在AC上.(9分)
在△DP1P2和△BP1P2中,
∠DP2P1=∠BP2P1,∠DP1P2=∠BP1P2,P1P2公共,
∴△DP1P2≌△BP1P2.(11分)
所以DP1=BP1,DP2=BP1,DP2=BP2,于是B、D关于AC对称.
设P是P1P2上任一点,连接PD、PB,由对称性,得∠DPA=∠BPA,∠DPC=∠BPC,
所以点P是四边形的半等角点.(14分)点评:通过阅读理解半等角点的概念,再综合运用知识解决问题,本题属于阅读理解题,对知识与能力要求较高.
命题立意:本题考查学生理解知识和综合运用知识的能力.
百度网友745aee5
2011-07-20
知道答主
回答量:11
采纳率:0%
帮助的人:0
展开全部
图呢??
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式