负数加减法怎么算
负数+负数=负数;例:(-1)+(-2)=-3
负数+正数=①正数②负数;例:(-1)+2=1 ;(-2)+1=-1
负数—负数=①正数②负数;例:(-1)—(-2)=1;(-2)—(-1)=-1
负数—正数=负数;例:(-1)-1=2
负数都比零小,则负数都比正数小。零既不是正数,也不是负数。则-a<0<(+)a
负数中没有最小的数,也没有最大的数。
去除负数前的负号等于这个负数的绝对值。
扩展资料:
负数法则:
负数1×负数2=(负数1×负数2) =正数
负数×正数=-(正数×负数)=负数
负数1÷负数2=(负数1÷负数2) =正数
负数÷正数=-(负数÷正数) =负数
总得来说,就是同号相除等于正数,异号相除等于负数。
“正负术”是正负术加减法则。其中有一段话是“同名相除,异名相益,正无入负之,负无入正之。”其实他就是加减法则,以现代算式为例,可以将这段话解释如下:
“同名相除”,即同号两数相减时,括号前为被减数的符号,括号内为被减数的绝对值减去减数的绝对值。例如:
(+5)-(-3)=+(5+3)
(-5)-(-3)=-(5-3)
“异名相益”,即异号两数相减时,括号前为被减数的符号,括号内为被减数的绝对值加上减数的绝对值。例如:
(+5)-(-3)=+(5+3)
(-5)-(+3)=-(5+3)
“正无入负之,负无入正之”,即0减正为负,0减负得正。例如:
0-(+3)=-3
0-(-3)=+3
减法算法,结果的符号根据两数的绝对值而定,如果第一个数的绝对值大,
结果为负,如果后面的数绝对值大,结果为正
如果一正一负,加法算法,结果的符号根据两数的绝对值而定,如果正数的绝对值大,
结果为正,如果负数的绝对值大,结果为负
减肥算法,如果正数减负数,那么结果的符号为正,绝对值为两数绝对值之和
如果负数减正数,那么结果的符号为负,绝对值为两数绝对值之和
应该就是这些了,希望能帮到楼主。GOOD LUCK
减负数等于加对应的正数
负数+正数=①正数②负数;例:(-1)+2=1
;(-2)+1=-1
负数—负数=①正数②负数;例:(-1)—(-2)=1;(-2)—(-1)=-1
负数—正数=负数;例:(-1)-1=2
负数都比零小,则负数都比正数小。零既不是正数,也不是负数。则-a<0<(+)a
负数中没有最小的数,也没有最大的数。
去除负数前的负号等于这个负数的绝对值。
扩展资料:
负数法则:
负数1×负数2=(负数1×负数2)
=正数
负数×正数=-(正数×负数)=负数
负数1÷负数2=(负数1÷负数2)
=正数
负数÷正数=-(负数÷正数)
=负数
总得来说,就是同号相除等于正数,异号相除等于负数。
“正负术”是正负术加减法则。其中有一段话是“同名相除,异名相益,正无入负之,负无入正之。”其实他就是加减法则,以现代算式为例,可以将这段话解释如下:
“同名相除”,即同号两数相减时,括号前为被减数的符号,括号内为被减数的绝对值减去减数的绝对值。例如:
(+5)-(-3)=+(5+3)
(-5)-(-3)=-(5-3)
“异名相益”,即异号两数相减时,括号前为被减数的符号,括号内为被减数的绝对值加上减数的绝对值。例如:
(+5)-(-3)=+(5+3)
(-5)-(+3)=-(5+3)
“正无入负之,负无入正之”,即0减正为负,0减负得正。例如:
0-(+3)=-3
0-(-3)=+3
负数+正数=①正数②负数;例:(-1)+2=1
;(-2)+1=-1
负数—负数=①正数②负数;例:(-1)—(-2)=1;(-2)—(-1)=-1
负数—正数=负数;例:(-1)-1=2
负数都比零小,则负数都比正数小。零既不是正数,也不是负数。则-a<0<(+)a
负数中没有最小的数,也没有最大的数。
去除负数前的负号等于这个负数的绝对值。
扩展资料:
负数法则:
负数1×负数2=(负数1×负数2)
=正数
负数×正数=-(正数×负数)=负数
负数1÷负数2=(负数1÷负数2)
=正数
负数÷正数=-(负数÷正数)
=负数
总得来说,就是同号相除等于正数,异号相除等于负数。
“正负术”是正负术加减法则。其中有一段话是“同名相除,异名相益,正无入负之,负无入正之。”其实他就是加减法则,以现代算式为例,可以将这段话解释如下:
“同名相除”,即同号两数相减时,括号前为被减数的符号,括号内为被减数的绝对值减去减数的绝对值。例如:
(+5)-(-3)=+(5+3)
(-5)-(-3)=-(5-3)
“异名相益”,即异号两数相减时,括号前为被减数的符号,括号内为被减数的绝对值加上减数的绝对值。例如:
(+5)-(-3)=+(5+3)
(-5)-(+3)=-(5+3)
“正无入负之,负无入正之”,即0减正为负,0减负得正。例如:
0-(+3)=-3
0-(-3)=+3
广告 您可能关注的内容 |