
当x+y=5,xy=-3时,求代数式x^3+y^3+x^2y+xy^2的值。今日完成。。。。
展开全部
=(x³+y³)+xy(x+y)
=(x+y)(x²-xy+y²)+xy(x+y)
=(x+y)(x²+y²)
=(x+y)[(x+y)²-2xy]
=5[25+6]
=155
=(x+y)(x²-xy+y²)+xy(x+y)
=(x+y)(x²+y²)
=(x+y)[(x+y)²-2xy]
=5[25+6]
=155
展开全部
x+y=5,xy=-3
x^3+y^3+x^2y+xy^2
=(x+y)(x²-xy+y²)+xy(x+y)
=(x+y)(x²+y²)
=(x+y)(x+y)²-2xy
=(x+y)³-2xy
=5³+6
=131
x^3+y^3+x^2y+xy^2
=(x+y)(x²-xy+y²)+xy(x+y)
=(x+y)(x²+y²)
=(x+y)(x+y)²-2xy
=(x+y)³-2xy
=5³+6
=131
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
x^3+y^3+x^2y+xy^2=x^3+x^2y+xy^2+y^3=x^2(x+y)+y^2(x+y)
=(x^2+y^2)(x+y)
=(x^2++2xy+y^2-2xy)(x+y)
=[(x+y)^2-2xy](x+y)
代入=(25+6)*5=155
=(x^2+y^2)(x+y)
=(x^2++2xy+y^2-2xy)(x+y)
=[(x+y)^2-2xy](x+y)
代入=(25+6)*5=155
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
原代数式可化为:
=(x^3+x^2y)+(y^3+xy^2)=x^2(x+y)+y^2(x+y)=5x^2+5y^2=5(x^2+y^2)
=5[(x+y)^2-2xy]=5[5^2-2*(-3)]=155
=(x^3+x^2y)+(y^3+xy^2)=x^2(x+y)+y^2(x+y)=5x^2+5y^2=5(x^2+y^2)
=5[(x+y)^2-2xy]=5[5^2-2*(-3)]=155
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询