如图,已知bd为∠abc的角平分线,cd为△abc的外角∠acf的角平分线,且cd与bd交于点d。试证明:∠a=2∠d
6个回答
展开全部
已知△ABC,(1)如图,若P点是∠ABC和∠ACB的角平分线的交点,则∠P=;
(2)如图,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=90°-∠A;
(3)如图,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=.
其中结论一定正确的序号数是(1)(3)
(1)(3)
.考点:三角形的外角性质;三角形内角和定理.分析:根据三角形的内角和外角之间的关系计算.解答:解:(1)正确;
(2)∵∠A=∠ACE-∠ABC=2∠PCE-2∠PBC=2(∠PCE-∠PBC)
∠P=∠PCE-∠PBC
∴2∠P=∠A
故(2)的结论是错误.
(3)正确.
故填(1)(3).点评:主要考查了三角形的内角和外角之间的关系.
(1)三角形的外角等于与它不相邻的两个内角和;
(2)三角形的内角和是180度.求角的度数常常要用到“三角形的内角和是180°这一隐 过M作AC的平行线,过A作BC的平行线,两线交于Q。连结NQ。QM与BN交于S。
容易知道∠AQN=∠BQN=45,∴∠BQN=90º=∠MQA,
又AQ:QN=QM:QB,
∴△QAM∽△QNB,
∴∠AMQ=NBQ,
又∠PSM=∠QSB,
∴根据三角形内角和等于180,得
∠MPS=∠BQS,
∵∠BQS=45,
∴∠BPM=∠MPS=∠BQS=45°,
参考:
证法一(初中知识证法):
证:已知在△ABC中,∠C=90°,点M在BC上,且BM=AC,点N在AC上,且AN=MC,AM与BN相交于点P。
设AC=BM=X,MC=AN=Y,则
BC=BM+MC=X+Y,CN=AC-AN=X-Y
AM=√(AC^2+MC^2)=√(X^2+Y^2)
过N点作NE⊥AM,交AM于E点,则△AEN∽△ACB
AE/AN=AC/AM,NE/AN=MC/AM
AE=AN*AC/AM=Y*X/√(X^2+Y^2)
NE=AN*MC/AM=Y^2/√(X^2+Y^2)
过P点作PF⊥BC,交BC于F点,则△PFM∽△ACM,△BPF∽△BNC
PF/FM=AC/MC,PF=FM*AC/MC=FM*X/Y
PF/BF=CN/BC,PF=BF*CN/BC=BF*(X-Y)/(X+Y)
BF*(X-Y)/(X+Y)=FM*X/Y
BF=(FM*X/Y)*[(X+Y)/(X-Y)]=FM*X*(X+Y)/[Y*(X-Y)]
BF=BM+FM=X+FM
FM*X*(X+Y)/[Y*(X-Y)]=X+FM
FM=XY*(X-Y)/(X^2+Y^2)
PM/FM=AM/CM
PM=FM*AM/MC=[XY*(X-Y)/(X^2+Y^2)]*[√(X^2+Y^2)/Y]
=X*(X-Y)/√(X^2+Y^2)
PE=AM-AE-PM
=√(X^2+Y^2)-Y*X/√(X^2+Y^2)-X*(X-Y)/√(X^2+Y^2)
=Y^2/√(X^2+Y^2)
=NE
因为NE⊥AM,即NE⊥PE
可知在直角△NEP中,NE=PE
故 ∠EPN=45°
但∠BPM=∠EPN
所以∠BPM=45°
证法二:
证:已知在△ABC中,∠C=90°,点M在BC上,且BM=AC,点N在AC上,且AN=MC,AM与BN相交于点P。
设AC=BM=X,MC=AN=Y,则
BC=BM+MC=X+Y,CN=AC-AN=X-Y
tan∠AMC=AC/MC=X/Y
tan∠NBC=CN/BC=(X-Y)/(X+Y)
∠AMC=∠BPM+∠NBC
∠BPM=∠AMC-∠NBC
tan∠BPM=tan(∠AMC-∠NBC)
=(tan∠AMC-tan∠NBC)/(1+tan∠AMC*tan∠NBC)
=[X/Y-(X-Y)/(X+Y)]/[1+(X/Y)*(X-Y)/(X+Y)]
=[X*(X+Y)-Y*(X-Y)]/[Y*(X+Y)+X*(X-Y)]
=(X ^2+Y ^2)/(X ^2+Y ^2)
=1
因为∠BPM<180°
所以∠BPM=45°
(2)如图,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=90°-∠A;
(3)如图,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=.
其中结论一定正确的序号数是(1)(3)
(1)(3)
.考点:三角形的外角性质;三角形内角和定理.分析:根据三角形的内角和外角之间的关系计算.解答:解:(1)正确;
(2)∵∠A=∠ACE-∠ABC=2∠PCE-2∠PBC=2(∠PCE-∠PBC)
∠P=∠PCE-∠PBC
∴2∠P=∠A
故(2)的结论是错误.
(3)正确.
故填(1)(3).点评:主要考查了三角形的内角和外角之间的关系.
(1)三角形的外角等于与它不相邻的两个内角和;
(2)三角形的内角和是180度.求角的度数常常要用到“三角形的内角和是180°这一隐 过M作AC的平行线,过A作BC的平行线,两线交于Q。连结NQ。QM与BN交于S。
容易知道∠AQN=∠BQN=45,∴∠BQN=90º=∠MQA,
又AQ:QN=QM:QB,
∴△QAM∽△QNB,
∴∠AMQ=NBQ,
又∠PSM=∠QSB,
∴根据三角形内角和等于180,得
∠MPS=∠BQS,
∵∠BQS=45,
∴∠BPM=∠MPS=∠BQS=45°,
参考:
证法一(初中知识证法):
证:已知在△ABC中,∠C=90°,点M在BC上,且BM=AC,点N在AC上,且AN=MC,AM与BN相交于点P。
设AC=BM=X,MC=AN=Y,则
BC=BM+MC=X+Y,CN=AC-AN=X-Y
AM=√(AC^2+MC^2)=√(X^2+Y^2)
过N点作NE⊥AM,交AM于E点,则△AEN∽△ACB
AE/AN=AC/AM,NE/AN=MC/AM
AE=AN*AC/AM=Y*X/√(X^2+Y^2)
NE=AN*MC/AM=Y^2/√(X^2+Y^2)
过P点作PF⊥BC,交BC于F点,则△PFM∽△ACM,△BPF∽△BNC
PF/FM=AC/MC,PF=FM*AC/MC=FM*X/Y
PF/BF=CN/BC,PF=BF*CN/BC=BF*(X-Y)/(X+Y)
BF*(X-Y)/(X+Y)=FM*X/Y
BF=(FM*X/Y)*[(X+Y)/(X-Y)]=FM*X*(X+Y)/[Y*(X-Y)]
BF=BM+FM=X+FM
FM*X*(X+Y)/[Y*(X-Y)]=X+FM
FM=XY*(X-Y)/(X^2+Y^2)
PM/FM=AM/CM
PM=FM*AM/MC=[XY*(X-Y)/(X^2+Y^2)]*[√(X^2+Y^2)/Y]
=X*(X-Y)/√(X^2+Y^2)
PE=AM-AE-PM
=√(X^2+Y^2)-Y*X/√(X^2+Y^2)-X*(X-Y)/√(X^2+Y^2)
=Y^2/√(X^2+Y^2)
=NE
因为NE⊥AM,即NE⊥PE
可知在直角△NEP中,NE=PE
故 ∠EPN=45°
但∠BPM=∠EPN
所以∠BPM=45°
证法二:
证:已知在△ABC中,∠C=90°,点M在BC上,且BM=AC,点N在AC上,且AN=MC,AM与BN相交于点P。
设AC=BM=X,MC=AN=Y,则
BC=BM+MC=X+Y,CN=AC-AN=X-Y
tan∠AMC=AC/MC=X/Y
tan∠NBC=CN/BC=(X-Y)/(X+Y)
∠AMC=∠BPM+∠NBC
∠BPM=∠AMC-∠NBC
tan∠BPM=tan(∠AMC-∠NBC)
=(tan∠AMC-tan∠NBC)/(1+tan∠AMC*tan∠NBC)
=[X/Y-(X-Y)/(X+Y)]/[1+(X/Y)*(X-Y)/(X+Y)]
=[X*(X+Y)-Y*(X-Y)]/[Y*(X+Y)+X*(X-Y)]
=(X ^2+Y ^2)/(X ^2+Y ^2)
=1
因为∠BPM<180°
所以∠BPM=45°
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
因为bd为∠abc的角平分线,所以∠abd=∠dbc=1/2∠abc
cd为△abc的外角∠acf的角平分线,
所以:∠acd=∠dce=1/2∠ace
∠a+∠abc=∠ace
∠d+∠dbc=∠d+1/2∠abc=∠dce=1/2∠ace
2∠d+∠abc=∠ace
所以∠a=2∠d
cd为△abc的外角∠acf的角平分线,
所以:∠acd=∠dce=1/2∠ace
∠a+∠abc=∠ace
∠d+∠dbc=∠d+1/2∠abc=∠dce=1/2∠ace
2∠d+∠abc=∠ace
所以∠a=2∠d
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-07-15
展开全部
设∠abd=∠dbc=∠1,
因为∠a+2∠1=∠ace
∠1+∠d=∠ace/2
所以联立两世可得:∠a=2∠d
因为∠a+2∠1=∠ace
∠1+∠d=∠ace/2
所以联立两世可得:∠a=2∠d
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解答:设∠ABD=α,则∠DBE=α,设∠ACD=β,则∠DCE=β,由外角定理得:①2β=2α+∠A,②β=α+∠D,∴②×2-①得:∠A=2∠D
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |