9个回答
展开全部
概念含有一个未知数且未知数的最高次数为2次的的不等式叫做一元二次不等式,它的一般形式是ax^2+bx+c>0或ax^2+bx+c<0(a不等于0),其中ax^2+bx+c实数域上的二次三项式。
一元二次不等式的解法 1)当V("V"表示判别是,下同)=b^2-4ac>=0时,二次三项式,ax^2+bx+c有两个实根,那么ax^2+bx+c总可分解为a(x-x1)(x-x2)的形式。这样,解一元二次不等式就可归结为解两个一元一次不等式组。一元二次不等式的解集就是这两个一元一次不等式组的解集的并集。
还是举个例子吧。
2x^2-7x+6<0
利用十字相乘法
2 -3
1 -2
得(2x-3)(x-2)<0
然后,分两种情况讨论:
一、2x-3<0,x-2>0
得x<1.5且x>2。不成立
二、2x-3>0,x-2<0
得x>1.5且x<2。
得最后不等式的解集为:1.5<x<2。
另外,你也可以用配方法解二次不等式:
2x^2-7x+6
=2(x^2-3.5x)+6
=2(x^2-3.5x+3.0625-3.0625)+6
=2(x^2-3.5x+3.0625)-6.125+6
=2(x-1.75)^2-0.125<0
2(x-1.75)^2<0.125
(x-1.75)^2<0.0625
两边开平方,得
x-1.75<0.25且x-1.75>-0.25
x<2且x>1.5
得不等式的解集为1.5<x<2
我们知道,实数与数轴上的点是一一对应的.在数轴上不同的两点中,右边的点表示的实数比左边的点表示的实数大.例如,在图6-1中,点A表示实数a,点B表示实数b,点A在点B右边,那么a>b.
我们再看图6-1,a>b表示a减去b所得的差是一个大于0的数即正数.一般地:
如果a>b,那么a-b是正数;逆命题也正确.
类似地,如果a<b,那么a-b是负数;如果a=b,那么a-b等于0.它们的逆命题都正确.
这就是说:
由此可见,要比较两个实数的大小,只要考察它们的差就可以了.
例1 比较(a+3)(a-5)与(a+2)(a-4)的大小.
解:(a+3)(a-5)-(a+2)(a-4)
=(a2-2a-15)-(a2-2a-8)
=-7<0,
∴(a+3)(a-5)<(a+2)(a-4).
例2 已知x≠0,比较(x2+1)2与x4+x2+1的大小.
解:(x2+1)2-(x4+x2+1)
=x4+2x2+1-x4-x2-1
=x2.
由x≠0,得x2>0,从而
(x2+1)2>x4+x2+1.
想一想:在例2中,如果没有x≠0这个条件,那么两式的大小关系如何?
练习
1.比较(x+5)(x+7)与(x+6)2的大小.
利用比较实数大小的方法,可以推出下列不等式的性质.
定理1 如果a>b,那么b<a;如果b<a,那么a>b.
证明:∵a>b,
∴a-b>0.
由正数的相反数是负数,得
-(a-b)<0,
即b-a<0,
∴b<a.
(定理1的后半部分请同学们自证.)
定理1说明,把不等式的左边和右边交换,所得不等式与原不等式异向①.
①在两个不等式中,如果每一个的左边都大于(或小于)右边,这两个不等式就是同向不等式,例如a2+2>a+1,3a2+5>2a是同向不等式;如果一个不等式的左边大于(或小于)右边,而另一个不等式的左边小于(或大于)右边,这两个不等式就是异向不等式,例如a2+3>2a,a2<a+5是异向不等式.
定理2 如果a>b,且b>c,那么a>c.
证明:∵a>b,b>c,
∴a-b>0,b-c>0.
根据两个正数的和仍是正数,得
(a-b)+(b-c)>0,
即a-c>0,
∴a>c.
根据定理1,定理2还可以表示为:
如果c<b,且b<a,那么c<a.
定理3 如果a>b,那么a+c>b+c.
证明:∵(a+c)-(b+c)
=a-b>0,
∴a+c>b+c.
定理3说明,不等式的两边都加上同一个实数,所得不等式与原不等式同向.
想一想:如果a<b,是否有a+c<b+c?
利用定理3可以得出:
如果a+b>c,那么a>c-b.
也就是说,不等式中任何一项改变符号后,可以把它从一边移到另一边.
推论 如果a>b,且c>d,那么a+c>b+d.
证明:∵a>b,
∴a+c>b+c. ①
∵c>d,
∴b+c>b+d. ②
由①、②得 a+c>b+d.
很明显,这一推论可以推广到任意有限个同向不等式两边分别相加.这就是说,两个或者更多个同向不等式两边分别相加,所得不等式与原不等式同向.
定理4 如果a>b,且c>0,那么ac>bc;如果a>b,且c<0,那么ac<bc.
证明:ac-bc=(a-b)c.
∵a>b,
∴a-b>0.
根据同号相乘得正,异号相乘得负,得
当c>0时,(a-b)c>0,即
ac>bc;
当c<0时,(a-b)c<0,即
ac<bc.
由定理4,又可以得到:
推论1 如果a>b>0,且c>d>0,那么
ac>bd.
同学们可以仿照定理3的推论证明定理4的推论1.
很明显,这一推论可以推广到任意有限个两边都是正数的同向不等式两边分别相乘.这就是说,两个或者更多个两边都是正数的同向不等式两边分别相乘,所得不等式与原不等式同向.由此,我们还可以得到:
推论2 如果a>b>0,那么an>bn(n∈N,且n>1).
我们用反证法来证明.
这些都同已知条件a>b>0矛盾.
利用以上不等式的性质及其推论,就可以证明一些不等式.
例3 已知a>b,c<d,求证a-c>b-d.
证明:由a>b知a-b>0,由c<d知d-c>0.
∵(a-c)-(b-d)
=(a-b)+(d-c)>0,
∴a-c>b-d.
证明:∵a>b>0,
即
又 c<0,
参考资料:http://www.ketang.net/shuxue/60/noname.htm
回答者:☆贱习爱神♂ - 见习魔法师 二级 1-27 13:42
其他回答共 1 条
解不等式
1.解不等式问题的分类
(1)解一元一次不等式.
(2)解一元二次不等式.
(3)可以化为一元一次或一元二次不等式的不等式.
①解一元高次不等式;
②解分式不等式;
③解无理不等式;
④解指数不等式;
⑤解对数不等式;
⑥解带绝对值的不等式;
⑦解不等式组.
2.解不等式时应特别注意下列几点:
(1)正确应用不等式的基本性质.
(2)正确应用幂函数、指数函数和对数函数的增、减性.
(3)注意代数式中未知数的取值范围.
3.不等式的同解性
(5)|f(x)|<g(x)与-g(x)<f(x)<g(x)同解.(g(x)>0)
(6)|f(x)|>g(x)①与f(x)>g(x)或f(x)<-g(x)(其中g(x)≥0)同解;②与g(x)<0同解.
(9)当a>1时,af(x)>ag(x)与f(x)>g(x)同解,当0<a<1时,af(x)>ag(x)与f(x)<g(x)同解.
函数
1、 若集合A中有n 个元素,则集合A的所有不同的子集个数为 ,所有非空真子集的个数是 。
二次函数 的图象的对称轴方程是 ,顶点坐标是 。用待定系数法求二次函数的解析式时,解析式的设法有三种形式,即 , 和 (顶点式)。
2、 幂函数 ,当n为正奇数,m为正偶数,m<n时,其大致图象是
3、 函数 的大致图象是
由图象知,函数的值域是 ,单调递增区间是 ,单调递减区间是 。
五、 数列
1、等差数列的通项公式是 ,前n项和公式是: = 。
2、等比数列的通项公式是 ,
前n项和公式是:
3、当等比数列 的公比q满足 <1时, =S= 。一般地,如果无穷数列 的前n项和的极限 存在,就把这个极限称为这个数列的各项和(或所有项的和),用S表示,即S= 。
4、若m、n、p、q∈N,且 ,那么:当数列 是等差数列时,有 ;当数列 是等比数列时,有 。
5、 等差数列 中,若Sn=10,S2n=30,则S3n=60;
6、等比数列 中,若Sn=10,S2n=30,则S3n=70;
一元二次不等式的解法 1)当V("V"表示判别是,下同)=b^2-4ac>=0时,二次三项式,ax^2+bx+c有两个实根,那么ax^2+bx+c总可分解为a(x-x1)(x-x2)的形式。这样,解一元二次不等式就可归结为解两个一元一次不等式组。一元二次不等式的解集就是这两个一元一次不等式组的解集的并集。
还是举个例子吧。
2x^2-7x+6<0
利用十字相乘法
2 -3
1 -2
得(2x-3)(x-2)<0
然后,分两种情况讨论:
一、2x-3<0,x-2>0
得x<1.5且x>2。不成立
二、2x-3>0,x-2<0
得x>1.5且x<2。
得最后不等式的解集为:1.5<x<2。
另外,你也可以用配方法解二次不等式:
2x^2-7x+6
=2(x^2-3.5x)+6
=2(x^2-3.5x+3.0625-3.0625)+6
=2(x^2-3.5x+3.0625)-6.125+6
=2(x-1.75)^2-0.125<0
2(x-1.75)^2<0.125
(x-1.75)^2<0.0625
两边开平方,得
x-1.75<0.25且x-1.75>-0.25
x<2且x>1.5
得不等式的解集为1.5<x<2
我们知道,实数与数轴上的点是一一对应的.在数轴上不同的两点中,右边的点表示的实数比左边的点表示的实数大.例如,在图6-1中,点A表示实数a,点B表示实数b,点A在点B右边,那么a>b.
我们再看图6-1,a>b表示a减去b所得的差是一个大于0的数即正数.一般地:
如果a>b,那么a-b是正数;逆命题也正确.
类似地,如果a<b,那么a-b是负数;如果a=b,那么a-b等于0.它们的逆命题都正确.
这就是说:
由此可见,要比较两个实数的大小,只要考察它们的差就可以了.
例1 比较(a+3)(a-5)与(a+2)(a-4)的大小.
解:(a+3)(a-5)-(a+2)(a-4)
=(a2-2a-15)-(a2-2a-8)
=-7<0,
∴(a+3)(a-5)<(a+2)(a-4).
例2 已知x≠0,比较(x2+1)2与x4+x2+1的大小.
解:(x2+1)2-(x4+x2+1)
=x4+2x2+1-x4-x2-1
=x2.
由x≠0,得x2>0,从而
(x2+1)2>x4+x2+1.
想一想:在例2中,如果没有x≠0这个条件,那么两式的大小关系如何?
练习
1.比较(x+5)(x+7)与(x+6)2的大小.
利用比较实数大小的方法,可以推出下列不等式的性质.
定理1 如果a>b,那么b<a;如果b<a,那么a>b.
证明:∵a>b,
∴a-b>0.
由正数的相反数是负数,得
-(a-b)<0,
即b-a<0,
∴b<a.
(定理1的后半部分请同学们自证.)
定理1说明,把不等式的左边和右边交换,所得不等式与原不等式异向①.
①在两个不等式中,如果每一个的左边都大于(或小于)右边,这两个不等式就是同向不等式,例如a2+2>a+1,3a2+5>2a是同向不等式;如果一个不等式的左边大于(或小于)右边,而另一个不等式的左边小于(或大于)右边,这两个不等式就是异向不等式,例如a2+3>2a,a2<a+5是异向不等式.
定理2 如果a>b,且b>c,那么a>c.
证明:∵a>b,b>c,
∴a-b>0,b-c>0.
根据两个正数的和仍是正数,得
(a-b)+(b-c)>0,
即a-c>0,
∴a>c.
根据定理1,定理2还可以表示为:
如果c<b,且b<a,那么c<a.
定理3 如果a>b,那么a+c>b+c.
证明:∵(a+c)-(b+c)
=a-b>0,
∴a+c>b+c.
定理3说明,不等式的两边都加上同一个实数,所得不等式与原不等式同向.
想一想:如果a<b,是否有a+c<b+c?
利用定理3可以得出:
如果a+b>c,那么a>c-b.
也就是说,不等式中任何一项改变符号后,可以把它从一边移到另一边.
推论 如果a>b,且c>d,那么a+c>b+d.
证明:∵a>b,
∴a+c>b+c. ①
∵c>d,
∴b+c>b+d. ②
由①、②得 a+c>b+d.
很明显,这一推论可以推广到任意有限个同向不等式两边分别相加.这就是说,两个或者更多个同向不等式两边分别相加,所得不等式与原不等式同向.
定理4 如果a>b,且c>0,那么ac>bc;如果a>b,且c<0,那么ac<bc.
证明:ac-bc=(a-b)c.
∵a>b,
∴a-b>0.
根据同号相乘得正,异号相乘得负,得
当c>0时,(a-b)c>0,即
ac>bc;
当c<0时,(a-b)c<0,即
ac<bc.
由定理4,又可以得到:
推论1 如果a>b>0,且c>d>0,那么
ac>bd.
同学们可以仿照定理3的推论证明定理4的推论1.
很明显,这一推论可以推广到任意有限个两边都是正数的同向不等式两边分别相乘.这就是说,两个或者更多个两边都是正数的同向不等式两边分别相乘,所得不等式与原不等式同向.由此,我们还可以得到:
推论2 如果a>b>0,那么an>bn(n∈N,且n>1).
我们用反证法来证明.
这些都同已知条件a>b>0矛盾.
利用以上不等式的性质及其推论,就可以证明一些不等式.
例3 已知a>b,c<d,求证a-c>b-d.
证明:由a>b知a-b>0,由c<d知d-c>0.
∵(a-c)-(b-d)
=(a-b)+(d-c)>0,
∴a-c>b-d.
证明:∵a>b>0,
即
又 c<0,
参考资料:http://www.ketang.net/shuxue/60/noname.htm
回答者:☆贱习爱神♂ - 见习魔法师 二级 1-27 13:42
其他回答共 1 条
解不等式
1.解不等式问题的分类
(1)解一元一次不等式.
(2)解一元二次不等式.
(3)可以化为一元一次或一元二次不等式的不等式.
①解一元高次不等式;
②解分式不等式;
③解无理不等式;
④解指数不等式;
⑤解对数不等式;
⑥解带绝对值的不等式;
⑦解不等式组.
2.解不等式时应特别注意下列几点:
(1)正确应用不等式的基本性质.
(2)正确应用幂函数、指数函数和对数函数的增、减性.
(3)注意代数式中未知数的取值范围.
3.不等式的同解性
(5)|f(x)|<g(x)与-g(x)<f(x)<g(x)同解.(g(x)>0)
(6)|f(x)|>g(x)①与f(x)>g(x)或f(x)<-g(x)(其中g(x)≥0)同解;②与g(x)<0同解.
(9)当a>1时,af(x)>ag(x)与f(x)>g(x)同解,当0<a<1时,af(x)>ag(x)与f(x)<g(x)同解.
函数
1、 若集合A中有n 个元素,则集合A的所有不同的子集个数为 ,所有非空真子集的个数是 。
二次函数 的图象的对称轴方程是 ,顶点坐标是 。用待定系数法求二次函数的解析式时,解析式的设法有三种形式,即 , 和 (顶点式)。
2、 幂函数 ,当n为正奇数,m为正偶数,m<n时,其大致图象是
3、 函数 的大致图象是
由图象知,函数的值域是 ,单调递增区间是 ,单调递减区间是 。
五、 数列
1、等差数列的通项公式是 ,前n项和公式是: = 。
2、等比数列的通项公式是 ,
前n项和公式是:
3、当等比数列 的公比q满足 <1时, =S= 。一般地,如果无穷数列 的前n项和的极限 存在,就把这个极限称为这个数列的各项和(或所有项的和),用S表示,即S= 。
4、若m、n、p、q∈N,且 ,那么:当数列 是等差数列时,有 ;当数列 是等比数列时,有 。
5、 等差数列 中,若Sn=10,S2n=30,则S3n=60;
6、等比数列 中,若Sn=10,S2n=30,则S3n=70;
展开全部
一元二次不等式的一般解法是分解因式后,化成一元一次不等式组,然后求解。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
两边开根号
第一个不等式会有X大于根号3或者X小于负根号3
第二个不等式:把上面的大于和小于对换
第一个不等式会有X大于根号3或者X小于负根号3
第二个不等式:把上面的大于和小于对换
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
2(x的平方)-4x+5>0
那么就可以得到 2(x的平方-2x+5/2)大于0
那么就可以得到 (x的平方-2x+5/2)大于0
那么就可以得到 (x-1)的平方+3/2 大于0
很显然 x 属于任何实数 都回满足不等式成立
再给你举个例子:
如何解这个 x的平方-4x+3>0 (方法向上面一样)
(x-2)的平方-1>0
(x-1)(x-3)>0
俩个数相乘 大于0 这俩个数肯定是同号
那么你就可以得到 x-1>0 且 x-3> 0
解得 x> 3
或 0>x-1 且 0>x-3
解得 1 > x
所以不等式 x的平方-4x+3>0 的解集是 1 > x 或x> 3
这样你明白吗?
那么就可以得到 2(x的平方-2x+5/2)大于0
那么就可以得到 (x的平方-2x+5/2)大于0
那么就可以得到 (x-1)的平方+3/2 大于0
很显然 x 属于任何实数 都回满足不等式成立
再给你举个例子:
如何解这个 x的平方-4x+3>0 (方法向上面一样)
(x-2)的平方-1>0
(x-1)(x-3)>0
俩个数相乘 大于0 这俩个数肯定是同号
那么你就可以得到 x-1>0 且 x-3> 0
解得 x> 3
或 0>x-1 且 0>x-3
解得 1 > x
所以不等式 x的平方-4x+3>0 的解集是 1 > x 或x> 3
这样你明白吗?
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
我晕 直接Δ<0 然后又开口向上 直接解集为 R
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询