写出二叉树的先序遍历、中序遍历、后序遍历。

不会的别乱写了。我可不是一点都不懂的... 不会的别乱写了。我可不是一点都不懂的 展开
 我来答
恩恩好活宝
2018-03-28 · TA获得超过9161个赞
知道小有建树答主
回答量:40
采纳率:15%
帮助的人:6424
展开全部

一、先序遍历: 

1、访问根节点 

2、前序遍历左子树 

3、前序遍历右子树 

二、中序遍历: 

1、中序遍历左子树 

2、访问根节点 

3、中序遍历右子树 

三、后序遍历: 

1、后序遍历左子树 

2、后序遍历右子树 

3、访问根节点

下面介绍一下例子与方法:

1、画树求法:

第一步,根据前序遍历的特点,我们知道根结点为G

第二步,观察中序遍历ADEFGHMZ。其中root节点G左侧的ADEF必然是root的左子树,G右侧的HMZ必然是root的右子树。

第三步,观察左子树ADEF,左子树的中的根节点必然是大树的root的leftchild。在前序遍历中,大树的root的leftchild位于root之后,所以左子树的根节点为D。

第四步,同样的道理,root的右子树节点HMZ中的根节点也可以通过前序遍历求得。在前序遍历中,一定是先把root和root的所有左子树节点遍历完之后才会遍历右子树,并且遍历的左子树的第一个节点就是左子树的根节点。同理,遍历的右子树的第一个节点就是右子树的根节点。

第五步,观察发现,上面的过程是递归的。先找到当前树的根节点,然后划分为左子树,右子树,然后进入左子树重复上面的过程,然后进入右子树重复上面的过程。最后就可以还原一棵树了。该步递归的过程可以简洁表达如下:

1 确定根,确定左子树,确定右子树。

2 在左子树中递归。

3 在右子树中递归。

4 打印当前根。

那么,我们可以画出这个二叉树的形状:

那么,根据后序的遍历规则,我们可以知道,后序遍历顺序为:AEFDHZMG

二叉树的一些介绍:

计算机科学中,二叉树是每个节点最多有两个子树的树结构。通常子树被称作“左子树”(left subtree)和“右子树”(right subtree)。二叉树常被用于实现二叉查找树和二叉堆。

二叉树的每个结点至多只有二棵子树(不存在度大于2的结点),二叉树的子树有左右之分,次序不能颠倒。二叉树的第i层至多有2^{i-1}个结点;深度为k的二叉树至多有2^k-1个结点;对任何一棵二叉树T,如果其终端结点数为n_0,度为2的结点数为n_2,则n_0=n_2+1。

一棵深度为k,且有2^k-1个节点称之为满二叉树;深度为k,有n个节点的二叉树,当且仅当其每一个节点都与深度为k的满二叉树中,序号为1至n的节点对应时,称之为完全二叉树

帝ku威
推荐于2018-08-07 · TA获得超过681个赞
知道答主
回答量:1
采纳率:0%
帮助的人:889
展开全部
首先 观察这个二叉树
可见是这样的:1.以B为根节点的左子树 A根节点 以C为根节点的右子树
2.以D为根节点的左子树 B根节点 以E为根节点的右子树
3.以G为根节点的左子树 D根节点 以H为根节点的右子树
4.以K为根节点的左子树 C根节点 以F为根节点的右子树
5.以I为根节点的左子树 F根节点 右子树为空
6.左子树为空 I根节点 以J为根节点的右子树
接下来可以进行遍历了:
前序遍历 是 根 左子树 右子树:
即先是跟节点A 然后遍历 B子树 遍历完B子树后 再遍历C子树 即最后答案为:
ABDGHECKFIJ
中序遍历为 左子树 根 右子树
先遍历 B子树 遍历完了 再是A节点 然后是右子树 答案为:
GDHBEAKCIJF
后序遍历是 左子树 右子树 根
答案为:
GHDEBKJIFCA
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
有钱买不起房子
推荐于2018-04-12 · TA获得超过4326个赞
知道大有可为答主
回答量:1249
采纳率:100%
帮助的人:2095万
展开全部
先序输出:
A B D G H E C K F I J
中序输出:
G D H B E A K C I J F
后序输出:
G H D E B K J I F C A
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友a1d280f
2019-08-23
知道答主
回答量:1
采纳率:0%
帮助的人:716
展开全部
前序:根、左子树、右子树 ABDGHECKFIJ

中序:左子树、根、右子树 GDHBEAKCIJF
后序:左子树、右子树、根 GHDEBKJIFCA
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
明道佑美time
2021-03-31 · TA获得超过1126个赞
知道答主
回答量:0
采纳率:0%
帮助的人:0
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(8)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式