
函数y=sin^4x+cos^4x的最小正周期为
2个回答
展开全部
y=sin^4x+cos^4x
=sin^4x+2sin^2xcos^2x+cos^4x-2sin^2xcos^2x
=(sin^2+cos^2)^2-(1/2)(2sinxcosx)^2
=1-(1/2)(sin2x)^2
=1-(1/4)(1-cos4x)
=(1/4)cos4x+3/4
故最小正周期为=2π/4=π/2
希望能帮到你,祝学习进步O(∩_∩)O
=sin^4x+2sin^2xcos^2x+cos^4x-2sin^2xcos^2x
=(sin^2+cos^2)^2-(1/2)(2sinxcosx)^2
=1-(1/2)(sin2x)^2
=1-(1/4)(1-cos4x)
=(1/4)cos4x+3/4
故最小正周期为=2π/4=π/2
希望能帮到你,祝学习进步O(∩_∩)O
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询