用定义证明函数f(x)=x^3-4在R上为单调递增函数
3个回答
展开全部
f(x)=x^3-4
设x1、x2∈R,x1>x2,
则f(x1)=x1³-4,f(x2)=x2³-4,
=> f(x1)-f(x2)=x1³-x2³=(x1-x2)(x1²+x1x2+x2²)=(x1-x2)[(x1+x2/2)²+3x2²/4]
x1>x2, =>x1-x2>0;
x1²+x1x2+x2²=[(x1+x2/2)²+3x2²/4]>0恒成立;
=> f(x1)-f(x2)>0
=> f(x1)>f(x2)
=> 函数f(x)=x^3-4在R上为单调递增函数
设x1、x2∈R,x1>x2,
则f(x1)=x1³-4,f(x2)=x2³-4,
=> f(x1)-f(x2)=x1³-x2³=(x1-x2)(x1²+x1x2+x2²)=(x1-x2)[(x1+x2/2)²+3x2²/4]
x1>x2, =>x1-x2>0;
x1²+x1x2+x2²=[(x1+x2/2)²+3x2²/4]>0恒成立;
=> f(x1)-f(x2)>0
=> f(x1)>f(x2)
=> 函数f(x)=x^3-4在R上为单调递增函数
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询