3个回答
展开全部
1) y=sin(x+π/3)
=> y'=cos(x+π/3)
y'>0时,cos(x+π/3)>0, => 2kπ-π/2<x+π/3<2kπ+π/2, => 2kπ-5π/6<x<2kπ+π/6,
则y=sin(x+π/3) 在[2kπ-5π/6 , 2kπ+π/6]单调增加,在( 2kπ+π/6, 2kπ+π7/6)单调减小,k∈Z
2)y=cos2x
=> y'=-2sin2x,
=> y'>0时,sin2x<0,=> 2kπ-π<2x<2kπ, => kπ-π/2<x<kπ,
则y=cos2x在[kπ-π/2,kπ]单调增加,在(kπ,kπ+π)单调减小,k∈Z
=> y'=cos(x+π/3)
y'>0时,cos(x+π/3)>0, => 2kπ-π/2<x+π/3<2kπ+π/2, => 2kπ-5π/6<x<2kπ+π/6,
则y=sin(x+π/3) 在[2kπ-5π/6 , 2kπ+π/6]单调增加,在( 2kπ+π/6, 2kπ+π7/6)单调减小,k∈Z
2)y=cos2x
=> y'=-2sin2x,
=> y'>0时,sin2x<0,=> 2kπ-π<2x<2kπ, => kπ-π/2<x<kπ,
则y=cos2x在[kπ-π/2,kπ]单调增加,在(kπ,kπ+π)单调减小,k∈Z
展开全部
(1) y=sin(x+π/3)
单增区间为x+π/3∈[2kπ-π/2, 2kπ+π/2] x∈[2kπ-5π/6, 2kπ+π/6], k∈Z
单减区间为x+π/3∈[2kπ+π/2, 2kπ+3π/2] x∈[2kπ+π/6, 2kπ+7π/6], k∈Z
(2)y=cos2x
单增区间为2x∈[2kπ-π, 2kπ] x∈[kπ-π/2, kπ], k∈Z
单减区间为2x∈[2kπ, 2kπ+π] x∈[kπ, kπ+π/2], k∈Z
希望能帮到你,祝学习进步O(∩_∩)O
单增区间为x+π/3∈[2kπ-π/2, 2kπ+π/2] x∈[2kπ-5π/6, 2kπ+π/6], k∈Z
单减区间为x+π/3∈[2kπ+π/2, 2kπ+3π/2] x∈[2kπ+π/6, 2kπ+7π/6], k∈Z
(2)y=cos2x
单增区间为2x∈[2kπ-π, 2kπ] x∈[kπ-π/2, kπ], k∈Z
单减区间为2x∈[2kπ, 2kπ+π] x∈[kπ, kπ+π/2], k∈Z
希望能帮到你,祝学习进步O(∩_∩)O
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
单增:[-5π/6+2kπ,π/6+2kπ] 单减:[π/6+2kπ,7π/6+2kπ]
单增:[π/2+kπ,π+kπ] 单减:[kπ,π/2+kπ]
单增:[π/2+kπ,π+kπ] 单减:[kπ,π/2+kπ]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询