请问:1^2+2^2+3^2+……+n^2 =n(n+1)(2n+1)/6是如何推得的?

936946590
2011-07-16 · TA获得超过2.9万个赞
知道大有可为答主
回答量:4446
采纳率:83%
帮助的人:2759万
展开全部
证法一
  (归纳猜想法):
  1、N=1时,1=1(1+1)(2×1+1)/6=1
  2、N=2时,1+4=2(2+1)(2×2+1)/6=5
  3、设N=x时,公式成立,即1+4+9+…+x2=x(x+1)(2x+1)/6
  则当N=x+1时,
  1+4+9+…+x2+(x+1)2=x(x+1)(2x+1)/6+(x+1)2
  =(x+1)[2(x2)+x+6(x+1)]/6
  =(x+1)[2(x2)+7x+6]/6
  =(x+1)(2x+3)(x+2)/6
  =(x+1)[(x+1)+1][2(x+1)+1]/6
  也满足公式
  4、综上所述,平方和公式1^2+2^2+3^2+…+n^2=n(n+1)(2n+1)/6成立,得证。
证法二
  (利用恒等式(n+1)^3=n^3+3n^2+3n+1) :
  (n+1)^3-n^3=3n^2+3n+1,
  n^3-(n-1)^3=3(n-1)^2+3(n-1)+1
  ..............................
  3^3-2^3=3*(2^2)+3*2+1
  2^3-1^3=3*(1^2)+3*1+1.
  把这n个等式两端分别相加,得:
  (n+1)^3-1=3(1^2+2^2+3^2+....+n^2)+3(1+2+3+...+n)+n,
  由于1+2+3+...+n=(n+1)n/2,
  代入上式得:
  n^3+3n^2+3n=3(1^2+2^2+3^2+....+n^2)+3(n+1)n/2+n
  整理后得:
  1^2+2^2+3^2+....+n^2=n(n+1)(2n+1)/6
培根爱裴根
2011-07-16 · TA获得超过235个赞
知道小有建树答主
回答量:383
采纳率:0%
帮助的人:190万
展开全部
最好的方法是:你画个杨辉三角。
     1
2 2
3 3 3
4 4 4 4
……
n n …… n n
将三角形的顶点旋转,使顶点为1,n,n
然后相加。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式