4个回答
展开全部
解:因为3≤2x+y≤9,,6≤x-y≤9
又因为z=x+2y
设z=a(2x+y)+b(x-y)=(2a+b)x+(a-b)y=x+2y
所以:2a+b=1 a-b=2
所以:a=1 b=-1
所以z=(2x+y)-(x-y)
3-6=-3 ≦(2x+y)-(x-y)≦9-9=0
又因为z=x+2y
设z=a(2x+y)+b(x-y)=(2a+b)x+(a-b)y=x+2y
所以:2a+b=1 a-b=2
所以:a=1 b=-1
所以z=(2x+y)-(x-y)
3-6=-3 ≦(2x+y)-(x-y)≦9-9=0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
分析:在坐标系中画出约束条件的可行域,得到的图形是一个平行四边形,把目标函数z=x+2y变化为y=-
12
x+
z2
,当直线沿着y轴向上移动时,z的值随着增大,当直线过A点时,z取到最小值,求出两条直线的交点坐标,代入目标函数得到最小值.
解:在坐标系中画出约束条件的可行域,
得到的图形是一个平行四边形,
目标函数z=x+2y,
变化为y=-
12
x+
z2
,
当直线沿着y轴向上移动时,z的值随着增大,
当直线过A点时,z取到最小值,
由y=x-9与2x+y=3的交点得到A(4,-5)
∴z=4+2(-5)=-6
故答案为:-6
12
x+
z2
,当直线沿着y轴向上移动时,z的值随着增大,当直线过A点时,z取到最小值,求出两条直线的交点坐标,代入目标函数得到最小值.
解:在坐标系中画出约束条件的可行域,
得到的图形是一个平行四边形,
目标函数z=x+2y,
变化为y=-
12
x+
z2
,
当直线沿着y轴向上移动时,z的值随着增大,
当直线过A点时,z取到最小值,
由y=x-9与2x+y=3的交点得到A(4,-5)
∴z=4+2(-5)=-6
故答案为:-6
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
这是一个线性规划问题,你把集合中的条件分开,将不等式函数画在坐标上,再按照线性规划的步骤做。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询