若m>0,n>0,m+n=1,求证:(m+1/m)^2+(n+1/n)^2≥25/2
展开全部
(m+1/m)^2+(n+1/n)^2
=m^2+1/m^2+2+n^2+1/n^2+2
=m^2+n^2+1/m^2+1/n^2+4
=m^2+n^2+(m^2+n^2)/(mn)^2+4
m^2+n^2=(m+n)^2-2mn
因为m>0,n>0,m+n=1
m=1-n
mn=(1-n)n=n-n^2=-(n^2-n+1/4)+1/4=-(n-1/2)^2+1/4≤1/4
所以m^2+n^2=(m+n)^2-2mn1-1/2=1/2
(m+1/m)^2+(n+1/n)^2
=m^2+n^2+(m^2+n^2)/(mn)^2+4
≥1/2+(1/2)/(1/4)^2+4=1/2+8+4=25/2
=m^2+1/m^2+2+n^2+1/n^2+2
=m^2+n^2+1/m^2+1/n^2+4
=m^2+n^2+(m^2+n^2)/(mn)^2+4
m^2+n^2=(m+n)^2-2mn
因为m>0,n>0,m+n=1
m=1-n
mn=(1-n)n=n-n^2=-(n^2-n+1/4)+1/4=-(n-1/2)^2+1/4≤1/4
所以m^2+n^2=(m+n)^2-2mn1-1/2=1/2
(m+1/m)^2+(n+1/n)^2
=m^2+n^2+(m^2+n^2)/(mn)^2+4
≥1/2+(1/2)/(1/4)^2+4=1/2+8+4=25/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询