
如图,在Rt三角形ABC中,角ACB=90°,AC=BC,点D是BC的中点,CE垂直AD,垂足为E,
在Rt三角形ABC中,角ACB=90度,AC=BC,D为BC边的中点,CE垂直于AD,垂足为E,BF平行于AC,交CE的延长线于点F,连接DF,求证:AB垂直平分DF。...
在Rt三角形ABC中,角ACB=90度,AC=BC,D为BC边的中点,CE垂直于AD,垂足为E,BF平行于AC,交CE的延长线于点F,连接DF,求证:AB垂直平分DF。
展开
1个回答
展开全部
证明:在RT三角形ADC中
∠DCE=∠CAD
即∠BCF=∠CAD
又 BF平行于AC,
所以∠FBC=∠DCA=90°
因为:AC=BC
所以:RT三角形FBC全等于RT三角形DCA
所以:BF=DC=BD
三角形BDF为等腰直角三角形。
又: ∠ABD=45°,
所以:AB平分∠FBD
所以 AB垂直平分DF。
∠DCE=∠CAD
即∠BCF=∠CAD
又 BF平行于AC,
所以∠FBC=∠DCA=90°
因为:AC=BC
所以:RT三角形FBC全等于RT三角形DCA
所以:BF=DC=BD
三角形BDF为等腰直角三角形。
又: ∠ABD=45°,
所以:AB平分∠FBD
所以 AB垂直平分DF。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询