设实数X,Y满足x+2y=1(x≤0),则x²+y²的最小值是多少
3个回答
展开全部
x=1-2y
x²+y²=1-4y+4y²+y²
=5y²-4y+1
=5(y²-4y/5+4/25)+1/5
=5(y-2/5)²+1/5
有最小值1/5
x²+y²=1-4y+4y²+y²
=5y²-4y+1
=5(y²-4y/5+4/25)+1/5
=5(y-2/5)²+1/5
有最小值1/5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-07-17 · 知道合伙人教育行家
关注
展开全部
因为x<=0,所以 y=(1-x)/2>=1/2
x²+y²
=(1-2y)^2+y^2
=5y^2-4y+1
=5(y-2/5)^2+1/5
上式在 [1/2,+无穷)上是增函数
所以最小值=5(y-2/5)^2+1/5|(y=1/2)
=1/4
x²+y²
=(1-2y)^2+y^2
=5y^2-4y+1
=5(y-2/5)^2+1/5
上式在 [1/2,+无穷)上是增函数
所以最小值=5(y-2/5)^2+1/5|(y=1/2)
=1/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询