模拟vector类中typedef T * iterator; iterator begin() { return iterator(p); } iterator(p)不懂?

那个returniterator(p)不懂,iterator(p)怎么回事?是初始化或指针赋值么?... 那个return iterator(p) 不懂, iterator(p)怎么回事?是初始化或指针赋值么? 展开
 我来答
匿名用户
2011-07-19
展开全部
template<typename _Tp, typename _Alloc = allocator<_Tp> >
class vector : protected _Vector_base<_Tp, _Alloc>
{
// Concept requirements.
__glibcxx_class_requires(_Tp, _SGIAssignableConcept)

typedef _Vector_base<_Tp, _Alloc> _Base;
typedef vector<_Tp, _Alloc> vector_type;

public:
typedef _Tp value_type;
typedef typename _Alloc::pointer pointer;
typedef typename _Alloc::const_pointer const_pointer;
typedef typename _Alloc::reference reference;
typedef typename _Alloc::const_reference const_reference;
typedef __gnu_cxx::__normal_iterator<pointer, vector_type> iterator;
typedef __gnu_cxx::__normal_iterator<const_pointer, vector_type>
const_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef typename _Base::allocator_type allocator_type;

protected:
using _Base::_M_allocate;
using _Base::_M_deallocate;
using _Base::_M_impl;

public:

explicit
vector(const allocator_type& __a = allocator_type())
: _Base(__a)

explicit
vector(size_type __n)
: _Base(__n, allocator_type())
{ this->_M_impl._M_finish = std::uninitialized_fill_n(this->_M_impl._M_start,
__n, value_type()); }

vector(const vector& __x)
: _Base(__x.size(), __x.get_allocator())
{ this->_M_impl._M_finish = std::uninitialized_copy(__x.begin(), __x.end(),
this->_M_impl._M_start);
}

template<typename _InputIterator>
vector(_InputIterator __first, _InputIterator __last,
const allocator_type& __a = allocator_type())
: _Base(__a)
{
// Check whether it's an integral type. If so, it's not an iterator.
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
_M_initialize_dispatch(__first, __last, _Integral());
}

~vector()

vector&
operator=(const vector& __x);

void
assign(size_type __n, const value_type& __val)

template<typename _InputIterator>
void
assign(_InputIterator __first, _InputIterator __last)
{
// Check whether it's an integral type. If so, it's not an iterator.
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
_M_assign_dispatch(__first, __last, _Integral());
}

/// Get a copy of the memory allocation object.
using _Base::get_allocator;

iterator
begin()

const_iterator
begin() const

iterator
end()

const_iterator
end() const

reverse_iterator
rbegin()

const_reverse_iterator
rbegin() const

reverse_iterator
rend()

const_reverse_iterator
rend() const

// [23.2.4.2] capacity
/** Returns the number of elements in the %vector. */
size_type
size() const

/** Returns the size() of the largest possible %vector. */
size_type
max_size() const

void
resize(size_type __new_size, const value_type& __x)
{
if (__new_size < size())
erase(begin() + __new_size, end());
else
insert(end(), __new_size - size(), __x);
}

void
resize(size_type __new_size)

size_type
capacity() const

bool
empty() const

void
reserve(size_type __n);

reference
operator[](size_type __n)

const_reference
operator[](size_type __n) const

protected:
/// @if maint Safety check used only from at(). @endif
void
_M_range_check(size_type __n) const
{
if (__n >= this->size())
__throw_out_of_range(__N("vector::_M_range_check"));
}

public:

reference
at(size_type __n)

const_reference
at(size_type __n) const

reference
front()

const_reference
front() const

reference
back()

const_reference
back() const

void
push_back(const value_type& __x)
{
if (this->_M_impl._M_finish != this->_M_impl._M_end_of_storage)
{
std::_Construct(this->_M_impl._M_finish, __x);
++this->_M_impl._M_finish;
}
else
_M_insert_aux(end(), __x);
}

void
pop_back()
{
--this->_M_impl._M_finish;
std::_Destroy(this->_M_impl._M_finish);
}

iterator
insert(iterator __position, const value_type& __x);

void
insert(iterator __position, size_type __n, const value_type& __x)

template<typename _InputIterator>
void
insert(iterator __position, _InputIterator __first,
_InputIterator __last)
{
// Check whether it's an integral type. If so, it's not an iterator.
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
_M_insert_dispatch(__position, __first, __last, _Integral());
}

iterator
erase(iterator __position);

iterator
erase(iterator __first, iterator __last);

void
swap(vector& __x)
{
std::swap(this->_M_impl._M_start, __x._M_impl._M_start);
std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish);
std::swap(this->_M_impl._M_end_of_storage, __x._M_impl._M_end_of_storage);
}

void
clear()

protected:

template<typename _ForwardIterator>
pointer
_M_allocate_and_copy(size_type __n,
_ForwardIterator __first, _ForwardIterator __last)
{
pointer __result = this->_M_allocate(__n);
try
{
std::uninitialized_copy(__first, __last, __result);
return __result;
}
catch(...)
{
_M_deallocate(__result, __n);
__throw_exception_again;
}
}

template<typename _Integer>
void
_M_initialize_dispatch(_Integer __n, _Integer __value, __true_type)
{
this->_M_impl._M_start = _M_allocate(__n);
this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
this->_M_impl._M_finish = std::uninitialized_fill_n(this->_M_impl._M_start,
__n, __value);
}

// Called by the range constructor to implement [23.1.1]/9
template<typename _InputIterator>
void
_M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
__false_type)
{
typedef typename iterator_traits<_InputIterator>::iterator_category
_IterCategory;
_M_range_initialize(__first, __last, _IterCategory());
}

// Called by the second initialize_dispatch above
template<typename _InputIterator>
void
_M_range_initialize(_InputIterator __first,
_InputIterator __last, input_iterator_tag)
{
for ( ; __first != __last; ++__first)
push_back(*__first);
}

// Called by the second initialize_dispatch above
template<typename _ForwardIterator>
void
_M_range_initialize(_ForwardIterator __first,
_ForwardIterator __last, forward_iterator_tag)
{
size_type __n = std::distance(__first, __last);
this->_M_impl._M_start = this->_M_allocate(__n);
this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
this->_M_impl._M_finish = std::uninitialized_copy(__first, __last,
this->_M_impl._M_start);
}

// Internal assign functions follow. The *_aux functions do the actual
// assignment work for the range versions.

// Called by the range assign to implement [23.1.1]/9
template<typename _Integer>
void
_M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
{
_M_fill_assign(static_cast<size_type>(__n),
static_cast<value_type>(__val));
}

// Called by the range assign to implement [23.1.1]/9
template<typename _InputIterator>
void
_M_assign_dispatch(_InputIterator __first, _InputIterator __last,
__false_type)
{
typedef typename iterator_traits<_InputIterator>::iterator_category
_IterCategory;
_M_assign_aux(__first, __last, _IterCategory());
}

// Called by the second assign_dispatch above
template<typename _InputIterator>
void
_M_assign_aux(_InputIterator __first, _InputIterator __last,
input_iterator_tag);

// Called by the second assign_dispatch above
template<typename _ForwardIterator>
void
_M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
forward_iterator_tag);

// Called by assign(n,t), and the range assign when it turns out
// to be the same thing.
void
_M_fill_assign(size_type __n, const value_type& __val);

// Internal insert functions follow.

// Called by the range insert to implement [23.1.1]/9
template<typename _Integer>
void
_M_insert_dispatch(iterator __pos, _Integer __n, _Integer __val,
__true_type)
{
_M_fill_insert(__pos, static_cast<size_type>(__n),
static_cast<value_type>(__val));
}

// Called by the range insert to implement [23.1.1]/9
template<typename _InputIterator>
void
_M_insert_dispatch(iterator __pos, _InputIterator __first,
_InputIterator __last, __false_type)
{
typedef typename iterator_traits<_InputIterator>::iterator_category
_IterCategory;
_M_range_insert(__pos, __first, __last, _IterCategory());
}

// Called by the second insert_dispatch above
template<typename _InputIterator>
void
_M_range_insert(iterator __pos, _InputIterator __first,
_InputIterator __last, input_iterator_tag);

// Called by the second insert_dispatch above
template<typename _ForwardIterator>
void
_M_range_insert(iterator __pos, _ForwardIterator __first,
_ForwardIterator __last, forward_iterator_tag);

// Called by insert(p,n,x), and the range insert when it turns out to be
// the same thing.
void
_M_fill_insert(iterator __pos, size_type __n, const value_type& __x);

// Called by insert(p,x)
void
_M_insert_aux(iterator __position, const value_type& __x);
};
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
tiaozong87
2011-07-18 · TA获得超过359个赞
知道答主
回答量:385
采纳率:0%
帮助的人:194万
展开全部
{ return const_reverse_iterator(begin()); } // [23.2.4.2] Called by assign(n,t), and the range assign when it turns out //
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式