证明题,用赋值法证明抽象函数的奇偶性可行吗?这不是仅仅代表特殊情况吗,证明题能这么做吗?

像这题:定义域为R的函数F(x),有F(x)+F(Y)=F(X+Y)答案书解法:令X=Y=0,再另Y=-X,最终得F(-X)=-F(-X)... 像这题:定义域为R的函数F(x),有F(x)+F(Y)=F(X+Y)
答案书解法:令X=Y=0,再另Y=-X,最终得F(-X)=-F(-X)
展开
百度网友beda7aa
2011-07-18 · TA获得超过356个赞
知道小有建树答主
回答量:113
采纳率:0%
帮助的人:191万
展开全部
,最终得以了F(-X)=-F(X),这里的X可以是任意实数,所以才得到了F是奇函数。
这里的赋值并不是被赋了特定的值,而被赋的值是可以取遍整个实数的
所以这种推理是可以证明函数的奇偶性的
当然,这种推理过程不是可逆的。

实际上,如果F是初等函数,是可以证明F(X)=aX 的(用高中的知识也可能证明不了这个结论)。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式