几何证明题求大神赐教!!
在如图所示的几何体中,四边形ABCD是正方形,MA垂直面ABCD,PD平行MA,E,G,F分别为MB,PB,PC中点,且AD=PD=2MA。求证面EFG垂直面PDC(少标...
在如图所示的几何体中,四边形ABCD是正方形,MA垂直面ABCD,PD平行MA,E,G,F分别为MB,PB,PC中点,且AD=PD=2MA。求证面EFG垂直面PDC(少标个B,你们懂的- -)
展开
2个回答
展开全部
解;因为PD=AB ABCD是正方形
所以PD=AB=BC=CD=DA
连接PC PC在平面PBC内
因为PD=DC
所以PC与DC的夹角为45度
设一点A1 使A1A=PD=DC=CB=BA=AD且A1A垂直ABCD
连接A1A A1B A1P
因为A1A=A1B=PD=DC且PD与A1A都垂直与ABCD
所以PC=A1B
连接DB AC
因为ABCD是正方形
所以DB=AC
因为DB=AC PD=A1A且PD与A1A都垂直ABCD
又因为DC=CB=AC
所以DB=AC
又因为DB=AC PD=A1A
所以BP=A1C
又因为PC=A1B PA1=BC PB=A1C
所以PA1BC是矩形
因为PA1BC是矩形,点E是PB的中点
所以PE=BE=A1E=EC
即点E是平面A1BCP的中心点
在PC上设点E1 A1B上设点E2
连接E1E2
使E1E2过点E且垂直于PC和A1B
因为点E是A1C与PB的中点
且垂直E1E2过点E 、且垂直与PC和A1B
所以E1E=E2E=二分之一BC=二分之一DA
连接E1D
因为PD=DC且角CPD=角PCD
所以E1C=E1P
E1P垂直于平面PA1BC
在AD直线上设点X 连接EX
使XE垂直平面PA1BC
EX=DE1 E1E=DX
因为EX=DE1 E1E=DX 且DX=AX
且点X在AD直线上
XE垂直平面PA1BC
因为PA1BC与PBC是同一平面
所以XE垂直于平面PBC
且X在PAD平面内
即点X就是所求的点F
故EF垂直平面PBC,且EF属于面EFG,故EFG垂直于面PBC
故面EFG垂直面PDC
所以PD=AB=BC=CD=DA
连接PC PC在平面PBC内
因为PD=DC
所以PC与DC的夹角为45度
设一点A1 使A1A=PD=DC=CB=BA=AD且A1A垂直ABCD
连接A1A A1B A1P
因为A1A=A1B=PD=DC且PD与A1A都垂直与ABCD
所以PC=A1B
连接DB AC
因为ABCD是正方形
所以DB=AC
因为DB=AC PD=A1A且PD与A1A都垂直ABCD
又因为DC=CB=AC
所以DB=AC
又因为DB=AC PD=A1A
所以BP=A1C
又因为PC=A1B PA1=BC PB=A1C
所以PA1BC是矩形
因为PA1BC是矩形,点E是PB的中点
所以PE=BE=A1E=EC
即点E是平面A1BCP的中心点
在PC上设点E1 A1B上设点E2
连接E1E2
使E1E2过点E且垂直于PC和A1B
因为点E是A1C与PB的中点
且垂直E1E2过点E 、且垂直与PC和A1B
所以E1E=E2E=二分之一BC=二分之一DA
连接E1D
因为PD=DC且角CPD=角PCD
所以E1C=E1P
E1P垂直于平面PA1BC
在AD直线上设点X 连接EX
使XE垂直平面PA1BC
EX=DE1 E1E=DX
因为EX=DE1 E1E=DX 且DX=AX
且点X在AD直线上
XE垂直平面PA1BC
因为PA1BC与PBC是同一平面
所以XE垂直于平面PBC
且X在PAD平面内
即点X就是所求的点F
故EF垂直平面PBC,且EF属于面EFG,故EFG垂直于面PBC
故面EFG垂直面PDC
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询