二次函数f(x)=ax^2+bx+c对一切x∈[-1.1],都有|f(x)|<=1证明1)|a+c|<=1, 2)对一切x∈[-1,1]都有|2ax+b|<=4 5
2个回答
展开全部
十分简单的基础题
(1).|f(1)|=|a+b+c|≤1
|f(-1)|=|a-b+c|≤1
由绝对值不等式,2|a+c|≤|a+b+c|+|a-b+c|≤2,
|a+c|≤1
(2).4f(0)=|-4c|≤4
|f(1)|=|3a+3b+3c|≤3
|f(-1)|=|a-b+c|≤1
若ab≥0
2*|2ax+b|≤2*|2a+b|≤|4a+2b+4c-4c|≤3|f(1)|+|f(-1)|+4|f(0)|≤8
∴|2ax+b|≤4
若ab≤0
2*|2ax+b|≤2*|2a-b|≤|a+b+c+3a-3b+3c+4c-4c|≤|f(1)|+3|f(-1)|+4|f(0)|≤8
∴|2ax+b|≤4
综上,对于一切x∈[-1,1],都有|2ax+b|≤4,证毕。。
(1).|f(1)|=|a+b+c|≤1
|f(-1)|=|a-b+c|≤1
由绝对值不等式,2|a+c|≤|a+b+c|+|a-b+c|≤2,
|a+c|≤1
(2).4f(0)=|-4c|≤4
|f(1)|=|3a+3b+3c|≤3
|f(-1)|=|a-b+c|≤1
若ab≥0
2*|2ax+b|≤2*|2a+b|≤|4a+2b+4c-4c|≤3|f(1)|+|f(-1)|+4|f(0)|≤8
∴|2ax+b|≤4
若ab≤0
2*|2ax+b|≤2*|2a-b|≤|a+b+c+3a-3b+3c+4c-4c|≤|f(1)|+3|f(-1)|+4|f(0)|≤8
∴|2ax+b|≤4
综上,对于一切x∈[-1,1],都有|2ax+b|≤4,证毕。。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询