1个回答
展开全部
换元x=sint,则dx=costdt,原式=∫costdt/(sint+cost)
cost/(sint+cost)=1/2×(cost+sint+cost-sint)/(sint+cost)=1/2×[1+(cost-sint)/(sint+cost)]
所以,原式=∫costdt/(sint+cost)=1/2×∫[1+(cost-sint)/(sint+cost)]dt=1/2×[t+∫1/(sint+cost)d(sint+cost)]=1/2×[t+ln|sint+cost|]+C=1/2×[arcsinx+ln|(x+√(1-x^2)|]+C
cost/(sint+cost)=1/2×(cost+sint+cost-sint)/(sint+cost)=1/2×[1+(cost-sint)/(sint+cost)]
所以,原式=∫costdt/(sint+cost)=1/2×∫[1+(cost-sint)/(sint+cost)]dt=1/2×[t+∫1/(sint+cost)d(sint+cost)]=1/2×[t+ln|sint+cost|]+C=1/2×[arcsinx+ln|(x+√(1-x^2)|]+C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询