已知函数f(x)=cos(2x-3/派)+2sin(x-4/派)sin(x+4/派)1。求f(x)的最小正周期和图像对称轴方程。 5
3个回答
展开全部
已知 f(x)=cos (2x-派/3)+2sin (x-派/4)sin (x+派/4)
=cos (2x-派/3)-2sin (x+派/4-派/2)sin (x+派/4)
=cos (2x-派/3)-2cos (x+派/4)sin (x+派/4)
=cos (2x-派/3)+sin (2x+派/2)
=cos (2x-派/3)-cos 2x
根据和差化积的公式,得
原式=2sin (2x-派/6)sin (派/6)
=sin (2x-派/6)
周期T=2派/2=派,对称轴:2x-派/6=派/2+k派 (k属于整数)
x=派/3+k派/2 (k属于整数)
因为函数 f(x)在-派/6到派/3为单调增函数
所以函数 f(x)在-派/12到派/2上的值域为:[-根号3/2,1]
=cos (2x-派/3)-2sin (x+派/4-派/2)sin (x+派/4)
=cos (2x-派/3)-2cos (x+派/4)sin (x+派/4)
=cos (2x-派/3)+sin (2x+派/2)
=cos (2x-派/3)-cos 2x
根据和差化积的公式,得
原式=2sin (2x-派/6)sin (派/6)
=sin (2x-派/6)
周期T=2派/2=派,对称轴:2x-派/6=派/2+k派 (k属于整数)
x=派/3+k派/2 (k属于整数)
因为函数 f(x)在-派/6到派/3为单调增函数
所以函数 f(x)在-派/12到派/2上的值域为:[-根号3/2,1]
展开全部
(1)f(x)=cos(2x-π/3)+2sin(x-π/4)sin(x+π/4)
=cos(2x-π/3)+cos[(x-π/4)-(x+π/4)]-cos[(x-π/4)+(x+π/4)]
=cos(2x-π/3)-cos2x+cos(-π/2)
=cos(2x-π/3)-cos2x
=-2sin(2x-π/6)sin(-π/6)
=sin(2x-π/6)
故最小正周期为π
图像的对称轴方程x=kπ/2+π/3
(2)由x∈[-π/12,π/2]得2x-π/6∈[-π/3,5π/6]
由π/2∈[-π/3,5π/6]
函数最大值为1
最小值为sin(-π/3)=-√3/2
故函数的值域是[-√3/2,1]
这题我们昨天考试卷上出了
=cos(2x-π/3)+cos[(x-π/4)-(x+π/4)]-cos[(x-π/4)+(x+π/4)]
=cos(2x-π/3)-cos2x+cos(-π/2)
=cos(2x-π/3)-cos2x
=-2sin(2x-π/6)sin(-π/6)
=sin(2x-π/6)
故最小正周期为π
图像的对称轴方程x=kπ/2+π/3
(2)由x∈[-π/12,π/2]得2x-π/6∈[-π/3,5π/6]
由π/2∈[-π/3,5π/6]
函数最大值为1
最小值为sin(-π/3)=-√3/2
故函数的值域是[-√3/2,1]
这题我们昨天考试卷上出了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已知 f(x)=cos (2x-派/3)+2sin (x-派/4)sin (x+派/4)
=cos (2x-派/3)-2sin (x+派/4-派/2)sin (x+派/4)
=cos (2x-派/3)-2cos (x+派/4)sin (x+派/4)
=cos (2x-派/3)+sin (2x+派/2)
=cos (2x-派/3)-cos 2x
根据和差化积的公式,得
原式=2sin (2x-派/6)sin (派/6)
=sin (2x-派/6)
周期T=2派/2=派,对称轴:2x-派/6=派/2+k派 (k属于整数)
x=派/3+k派/2 (k属于整数)
因为函数 f(x)在-派/6到派/3为单调增函数
所以函数 f(x)在-派/12到派/2上的值域为:[-根号3/2,1]就是这样了
=cos (2x-派/3)-2sin (x+派/4-派/2)sin (x+派/4)
=cos (2x-派/3)-2cos (x+派/4)sin (x+派/4)
=cos (2x-派/3)+sin (2x+派/2)
=cos (2x-派/3)-cos 2x
根据和差化积的公式,得
原式=2sin (2x-派/6)sin (派/6)
=sin (2x-派/6)
周期T=2派/2=派,对称轴:2x-派/6=派/2+k派 (k属于整数)
x=派/3+k派/2 (k属于整数)
因为函数 f(x)在-派/6到派/3为单调增函数
所以函数 f(x)在-派/12到派/2上的值域为:[-根号3/2,1]就是这样了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询