高一数学求答案
2.若log2[log1/2(log2x)]=log3[log1/3(log3y]=log5[log1/5(log5z)]=0,则x,y,z的关系是()A.z<x<yB....
2.若log2[log1/2(log2x)]=log3[log1/3(log3y]=log5[log1/5(log5z)]=0,则x,y,z的关系是( )
A.z<x<y B.x<y<z C.y<z<x D.z<y<x 展开
A.z<x<y B.x<y<z C.y<z<x D.z<y<x 展开
1个回答
展开全部
log2[log1/2(log2x)]=log3[log1/3(log3y)]=比log5[log1/5(log5z)]=o,较x,y,z大小
log2[log1/2(log2x)]=0=log2(1)
log1/2(log2x)=1=log1/2(1/2)
log2(x)=1/2
x=2^(1/2)
log3[log1/3(log3y)]=0
log1/3(log3y)=1
log3(y)=1/3
y=3^(1/3)
x^6=2^3=8
y^6=3^2=9
所以y>x
log5[log1/5(log5z)]=o
log1/5(log5z)=1
log5(z)=1/5
z=5^(1/5)
x^10=2^5=32
z^10=5^2=25
所以x>z
所以y>x>z
log2[log1/2(log2x)]=0=log2(1)
log1/2(log2x)=1=log1/2(1/2)
log2(x)=1/2
x=2^(1/2)
log3[log1/3(log3y)]=0
log1/3(log3y)=1
log3(y)=1/3
y=3^(1/3)
x^6=2^3=8
y^6=3^2=9
所以y>x
log5[log1/5(log5z)]=o
log1/5(log5z)=1
log5(z)=1/5
z=5^(1/5)
x^10=2^5=32
z^10=5^2=25
所以x>z
所以y>x>z
参考资料: http://zhidao.baidu.com/question/123256286.html
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询