证明sinA+sin(A+2π/3)+sin(A-2π/3)=0
4个回答
展开全部
解:
sinA+sin(A+2π/3)+sin(A-2π/3)
=sinA+sinAcos2π/3+cosAsin2π/3+sinAcos2π/3-cosAsin2π/3
=sinA+2sinAcos2π/3
=sinA+2sinA*(-1/2)
=sinA-sinA
=0.
sinA+sin(A+2π/3)+sin(A-2π/3)
=sinA+sinAcos2π/3+cosAsin2π/3+sinAcos2π/3-cosAsin2π/3
=sinA+2sinAcos2π/3
=sinA+2sinA*(-1/2)
=sinA-sinA
=0.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-07-19
展开全部
证明sinA sin(A 2π/3) sin(A-2π/3)=0
nA sin(A 2/3π) cos(A 5/6π)
=sina sinacos2/3pai sin2/3paicosa cosacos5/6pai-sinasin5/6pai
=sina-1/2sina 根号3/2cosa-根号3/2cosa-1/2sina
=0
nA sin(A 2/3π) cos(A 5/6π)
=sina sinacos2/3pai sin2/3paicosa cosacos5/6pai-sinasin5/6pai
=sina-1/2sina 根号3/2cosa-根号3/2cosa-1/2sina
=0
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(b-3)/(sin45-sin15)=4/sin45 因:sin45-sin15= 2cos30sin15 √2/2-sin15=√3sin15 sin15=(√6-√2)/4 所以:b=a/sinA*sinB =12√2/[
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询