高中数学向量题
已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P是腰DC上的动点,则|向量PA+3向量PB|的最小值为...
已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P是腰DC上的动点,则|向量PA+3向量PB|的最小值为
展开
1个回答
展开全部
(以下字母均表示向量)
PA=PD+DA,PB=PC+CB,所以PA+3PB=PD+DA+3PC+3CB。
因为PD=CD-CP,DA=2CB,
所以PA+3PB=PD+DA+PC+CB=CD-CP+2CB+3PC+3CB=CD+4PC+5CB。
CB与PC、CD垂直,所以按照向量加法,只有CD+4PC为0时,PA+3PB的模长才最短,
即 |PA+3PB|的最小值=|5CB|=5。
PA=PD+DA,PB=PC+CB,所以PA+3PB=PD+DA+3PC+3CB。
因为PD=CD-CP,DA=2CB,
所以PA+3PB=PD+DA+PC+CB=CD-CP+2CB+3PC+3CB=CD+4PC+5CB。
CB与PC、CD垂直,所以按照向量加法,只有CD+4PC为0时,PA+3PB的模长才最短,
即 |PA+3PB|的最小值=|5CB|=5。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询