初一数学题、 非常急~~~~
我市某商场为做好“家电下乡”的惠民服务,决定从厂家购进甲、乙、丙三种不同型号的电视机108台,其中甲种电视机的台数是丙种的4倍,购进三种电视机的金额不超过147000元,...
我市某商场为做好“家电下乡”的惠民服务,决定从厂家购进甲、乙、丙三种不同型号的电视机108台,其中甲种电视机的台数是丙种的4倍,购进三种电视机的金额不超过147000元,已知甲、乙、丙三种型号的出厂价格分别为1000元/台,1500元/台,2000元/台。
(1)求该商场至少购买丙种电视机多少台?
(2)若要求甲种电视机的台数不超过乙种电视机的台数,问有哪些购买方案? 展开
(1)求该商场至少购买丙种电视机多少台?
(2)若要求甲种电视机的台数不超过乙种电视机的台数,问有哪些购买方案? 展开
3个回答
展开全部
解:(1)设购买丙种电视机x台,则购买甲种电视机4x台,购买乙种电视机(108-5x)台,
根据题意,得1000×4x+1500×(108-5x)+2000x≤147000
解这个不等式得
x≥10
因此至少购买丙种电视机10台;
(2)甲种电视机4x台,购买乙种电视机(108-5x)台,根据题意,
得4x≤108-5x
解得x≤12
又∵x是整数,由(1)得
10≤x≤12
∴x=10,11,12,因此有三种方案.
方案一:购进甲,乙,丙三种不同型号的电视机分别为40台,58台,10台;
方案二:购进甲,乙,丙三种不同型号的电视机分别为44台,53台,11台;
方案三:购进甲,乙,丙三种不同型号的电视机分别为48台,48台,12台.
点评:本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.
根据题意,得1000×4x+1500×(108-5x)+2000x≤147000
解这个不等式得
x≥10
因此至少购买丙种电视机10台;
(2)甲种电视机4x台,购买乙种电视机(108-5x)台,根据题意,
得4x≤108-5x
解得x≤12
又∵x是整数,由(1)得
10≤x≤12
∴x=10,11,12,因此有三种方案.
方案一:购进甲,乙,丙三种不同型号的电视机分别为40台,58台,10台;
方案二:购进甲,乙,丙三种不同型号的电视机分别为44台,53台,11台;
方案三:购进甲,乙,丙三种不同型号的电视机分别为48台,48台,12台.
点评:本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.
展开全部
解:
(1)设购买丙种电视机x台,则购买甲种电视机4x台,购买乙种电视机(108-5x)台,
根据题意,得1000×4x+1500×(108-5x)+2000x≤147000
解这个不等式得
x≥10
因此至少购买丙种电视机10台;
(2)甲种电视机4x台,购买乙种电视机(108-5x)台,根据题意,
得4x≤108-5x
解得x≤12
又∵x是整数,由(1)得
10≤x≤12
∴x=10,11,12,因此有三种方案.
方案一:购进甲,乙,丙三种不同型号的电视机分别为40台,58台,10台;
方案二:购进甲,乙,丙三种不同型号的电视机分别为44台,53台,11台;
方案三:购进甲,乙,丙三种不同型号的电视机分别为48台,48台,12台.
(1)设购买丙种电视机x台,则购买甲种电视机4x台,购买乙种电视机(108-5x)台,
根据题意,得1000×4x+1500×(108-5x)+2000x≤147000
解这个不等式得
x≥10
因此至少购买丙种电视机10台;
(2)甲种电视机4x台,购买乙种电视机(108-5x)台,根据题意,
得4x≤108-5x
解得x≤12
又∵x是整数,由(1)得
10≤x≤12
∴x=10,11,12,因此有三种方案.
方案一:购进甲,乙,丙三种不同型号的电视机分别为40台,58台,10台;
方案二:购进甲,乙,丙三种不同型号的电视机分别为44台,53台,11台;
方案三:购进甲,乙,丙三种不同型号的电视机分别为48台,48台,12台.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:(1)设购买丙种电视机x台,则购买甲种电视机4x台,购买乙种电视机(108-5x)台,根据题意,得:
1000×4x+1500×(108-5x)+2000x≤147000
4000x+162000-7500x+2000x≤147000
-1500x≤147000-162000
-1500x≤-15000
1500x≥15000
解这个不等式得
x≥10
因此至少购买丙种电视机10台;
(2)根据题意,得
4x≤108-5x
解得x≤12
又∵x是整数,由(1)得
10≤x≤12
∴x=10,11,12,因此有三种方案.
方案一:购进甲,乙,丙三种不同型号的电视机分别为40台,58台,10台;
方案二:购进甲,乙,丙三种不同型号的电视机分别为44台,53台,11台;
方案三:购进甲,乙,丙三种不同型号的电视机分别为48台,48台,12台.
1000×4x+1500×(108-5x)+2000x≤147000
4000x+162000-7500x+2000x≤147000
-1500x≤147000-162000
-1500x≤-15000
1500x≥15000
解这个不等式得
x≥10
因此至少购买丙种电视机10台;
(2)根据题意,得
4x≤108-5x
解得x≤12
又∵x是整数,由(1)得
10≤x≤12
∴x=10,11,12,因此有三种方案.
方案一:购进甲,乙,丙三种不同型号的电视机分别为40台,58台,10台;
方案二:购进甲,乙,丙三种不同型号的电视机分别为44台,53台,11台;
方案三:购进甲,乙,丙三种不同型号的电视机分别为48台,48台,12台.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询