已知数列 an 满足a1=1 a(n+1)=an/(2^n*an+1)
第一问我已求出an通项公式,第二问是设A=lim3an/[2a(n+1)](n→∞)证明对任意m≥2,且m∈N,都有A>(1+1/m)^m...
第一问我已求出an通项公式,第二问是 设A=lim3an/[2a(n+1)] (n→∞)证明对任意m≥2,且m∈N,都有A > (1+1/m)^m
展开
2个回答
展开全部
楼上求an求错了
1/a(n+1)-1/a1=2((2^n)-1)/(2-1)=2^(n+1)-2
a(n+1)=1/[2^(n+1)-1]
an=1/(2^n-1)
3an/[2a(n+1)]
=[3/(2^n-1) ]/[2/(2^(n+1)-1) ]
=3*(2^(n+1)-1) /2*(2^n-1)
=3*(2^(n+1)-1) /[2^(n+1)-2]
=[3*2^(n+1)-3] /[2^(n+1)-2]+3-3
=3/[2^(n+1)-2]+3
A=lim3an/[2a(n+1)] (n→∞)=3
题目等价于证明对任意m≥2,且m∈N,都有3 > (1+1/m)^m
一、右边=9/4,因为3>9/4,所以m=2时不等式成立
二、设y= (1+1/m)^m
则ln y=ln[(1+1/m)^m]
ln y=m*ln(1+1/m)
对m求导,y'/y=ln(1+1/m)+(-1/m^2)*m/(1+1/m)=ln(1+1/m)-(1/m)/(1+1/m)=ln(1+1/m)-1/(m+1)
y'=(1+1/m)^m*[ln(1+1/m)-1/(m+1)]
设z=ln(1+1/m)-1/(m+1)
则z'=(-1/m^2)/(1+1/m)+1/(m+1)^2=-1/(m^2+m)+1/(m^2+2m+1)<0
又m=2时z=ln(3/2)-2/3<0
故z<0
故y'<0
又m=2时,y=9/4<3,
故m>2时,y<A,即对任意m≥2,且m∈N,都有A > (1+1/m)^m
证毕
1/a(n+1)-1/a1=2((2^n)-1)/(2-1)=2^(n+1)-2
a(n+1)=1/[2^(n+1)-1]
an=1/(2^n-1)
3an/[2a(n+1)]
=[3/(2^n-1) ]/[2/(2^(n+1)-1) ]
=3*(2^(n+1)-1) /2*(2^n-1)
=3*(2^(n+1)-1) /[2^(n+1)-2]
=[3*2^(n+1)-3] /[2^(n+1)-2]+3-3
=3/[2^(n+1)-2]+3
A=lim3an/[2a(n+1)] (n→∞)=3
题目等价于证明对任意m≥2,且m∈N,都有3 > (1+1/m)^m
一、右边=9/4,因为3>9/4,所以m=2时不等式成立
二、设y= (1+1/m)^m
则ln y=ln[(1+1/m)^m]
ln y=m*ln(1+1/m)
对m求导,y'/y=ln(1+1/m)+(-1/m^2)*m/(1+1/m)=ln(1+1/m)-(1/m)/(1+1/m)=ln(1+1/m)-1/(m+1)
y'=(1+1/m)^m*[ln(1+1/m)-1/(m+1)]
设z=ln(1+1/m)-1/(m+1)
则z'=(-1/m^2)/(1+1/m)+1/(m+1)^2=-1/(m^2+m)+1/(m^2+2m+1)<0
又m=2时z=ln(3/2)-2/3<0
故z<0
故y'<0
又m=2时,y=9/4<3,
故m>2时,y<A,即对任意m≥2,且m∈N,都有A > (1+1/m)^m
证毕
展开全部
2^n*an*a(n+1)+a(n+1)=an
2^n+1/an=1/a(n+1)
1/a(n+1)-1/an=2^n
1/an-1/a(n-1)=1/2^(n-1)
...
1/a2-1/a1=1/2^1
相加:1/a(n+1)-1/a1=1/2^1+...+1/2^(n-1)+1/2^n=1-1/2^n
即1/a(n+1)=2-1/2^n
an=2^n/(2^(n+1)-1)
2^n+1/an=1/a(n+1)
1/a(n+1)-1/an=2^n
1/an-1/a(n-1)=1/2^(n-1)
...
1/a2-1/a1=1/2^1
相加:1/a(n+1)-1/a1=1/2^1+...+1/2^(n-1)+1/2^n=1-1/2^n
即1/a(n+1)=2-1/2^n
an=2^n/(2^(n+1)-1)
追问
an我求出来了的,你好像错了,应该是an=1/(2^n-1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询